
How to make CTF Challenges
Presentation by Thomas and Faisal

Motivations

● We need people to develop challenges
○ Eventually the people currently making challenges will graduate, then what!?

● Developing challenges strengthens your understanding of
○ how to write secure code.

○ the topic your challenge is about.

○ Vulnerability analysis and other CTF challenges.

● You can solve your own challenge for points!
○ This is allowed on SIGPwny’s internal server, this does not apply to public CTFs

Challenge Development Steps

Development Steps - Topic

If you know the topic well

- Think about a challenge that people who are
advanced in the topic can solve, but don't make it
too niche.

- Try to avoid stereotypical challenges, more
advanced challenges can be unique.

- Check recent CTFs (ctftime) for inspiration, but
don't copy!

Make the Challenges...
Difficult
Solvable

Not too niche!

If you are new to the topic

- Search for past CTF challenges, 50-100 points.

- Look at writeups for those challenges

- Try to understand the underlying fundamentals

and assumptions that cause the vulnerabilities

the other challenges are using.

- Solve some challenges from other CTFs, try to

gain an understanding of the challenge

fundamentals.

Were going to focus on this side

You likely need to have some
prior knowledge, otherwise be
ready for a ton of learning

300
● Typically involve multiple vulnerabilities or one high

difficulty vulnerability to solve.
● Utilizes deeper, more specific features of the category
● Solvable in 2-8 hours typically

Good fundamentals, some
googling, and grit will get you
through this without issue

200
● More challenging single step challenges,

multi-faceted (two category) challenges as well.
● Utilize general, well known security knowledge
● Solvable in 1-2 hours typically

Difficult, but a script could
probably solve it already100

● Single step challenges
● Utilize security fundamentals
● Typically solvable in under an hour with appropriate

knowledge (this applies to 200 +)

Specific category knowledge
required, challenge very
difficult otherwise.

400
● Utilizes complex vulnerability chains
● May utilize newer vulnerabilities, or very deep

extremely specific attack vectors
● Solvable in a day typically

Specialists may have a hard
time solving this one500

● Extremely challenging, typically multistep
challenges (single step 500’s are horrifying)

● Might utilize a 0day
● Often take the whole CTF if alone

S̴͖̩͖ ̉̆ ǘ̸̢͋̚̕m̵̨ ̛̳͎̱͑̽̒ m̵̢̼̬͈͍͂̓̔̔͑ ̉ ͘͝o̵̡̠̍ n̸̢̠͍͙ ̊ ̶̨̪͍̺̰̈ ́̂͒̄̑ ̕͘̕ą̸͚̜̔̊̒ ̃́ ̶̦̳̜̰͋ͅh̶̨̻̲̠̻͚̘ ̎ a̵̡̫̠̘͖͇̥̅͒̒ c̷͇̖͖̞̮̞͎͆͠ k̴̭̲͔̲̑̓ ̉̓ e̶̜̲̘̹ ̊ ͗̎̅̂̂͛ r̷̼͖ ͋ ̴̺̈̔̕
ģ̵̢̮̹ ̣͕ ̀͐ ́̎̊̄̈ ͐ o̴̧̘̻͈̺ ͌̓͆̅ ͘͜ͅḑ̴̽̔

EX
500 >

● Often utilizes unique architectures / specialized
environments. May also utilize zero days

● Typically covering something very niche / specific
● May take weeks or a team the whole CTF to do

Hacker Brain Level

This scales in either
direction depending

on the CTF

Development Steps - Specifics (This applies to all CTFs)*

Could someone in 461 trivially** do
what your challenge revolves around

Can someone with no
experience do what your

challenge revolves around

Will the challenge be trivial
for a subject matter expert

400-500 Point challenge200-300 Point challenge100-200 Point challenge50-100 Point Intro Chal

* Internal CTF is weighted differently
** TRIVIAL != FAST

|--------------------Tips will be for these two categories--------------------|

YES

YESYES

NO

NONO

Development Steps - Development

- Make sure most teams would have someone who knows the

environment your challenge is being developed in.
- If you want to make a very niche challenge, just make one or two

(Unless your CTF is centered around that niche)

- Don’t make half your challenges one specific weird programming

language unless people know that in advance & can prepare.

(*cough* *cough* ocaml @ppp *cough* *cough*)

Development Steps - Development

- Make sure your challenge is not too large (file size), and does not require

excessive libraries to run (if giving local copy).

- Include a solution.md, and a solution.py if possible

- Make sure to include hosting materials if needed (docker etc).
- See resources slide for pwn docker skeletons.

Development Steps - Deployment

1. Compress and send your file to an exec, check to make sure you have
a. Dockerfile
b. solution.md (solve.py)
c. info.md (points, title, description)

i. Could also be challenge.yaml

2. Test your challenge live

3. Have SOMEONE ELSE test your challenge live
a. If possible on a different architecture / OS

4. Make sure your challenge is up on CTFd

Words of Warning

Unless explicitly stating you are doing so in challenge description and readme,

NEVER INCLUDE POTENTIALLY HARMFUL SOFTWARE IN YOUR CHALLENGE

That means

NO rm -rf (EVEN IF IT IS FAKE OR WON'T BE EXECUTED)

NO RATs or callback shells

Nothing legitimately malicious

Club admins should be able to see source / compile from source, and reserve the

right to ask for the source to be changed should we see something malicious.

Tips and Resources for Specific Topics

Tips - RE

- Challenges that are just a ton of if statements can usually be solved with angr
- For beginners, writing a challenge that doesn't require lower-level knowledge is valuable.

- That way experienced CTF players likely have scripts that can solve it.

- Don’t obfuscate source so much that it is annoying.

Resources / Inspiration for RE chal design

- https://challenges.re/

- https://infosecwriteups.com/tagged/reverse-engineering

https://challenges.re/
https://infosecwriteups.com/tagged/reverse-engineering

Tips - PWN

- For easier challenges, go by the rule “Stop at ROP”
- Don't do challenges significantly harder than rop, newcomers won't know what to do and will

give up before they can figure it out.

- The actual vulnerability does not have to be the hard part!!!
- You can make the vulnerability simple, but triggering the vulnerability difficult

- See Accounting Accidents (link)

- Grab skeleton code for c challenges and python based challenges on chal.dev

http://pwning.net/pwn/2020/07/22/UIUCTF20-accounting-accidents/

Tips - Web

- Grab flask skeleton on chal.dev (resources)

- SOMEONE HELP ME WITH THIS I DON'T DEVELOP WEB CHALLENGES

Tips - Crypto

- Hit the goldilocks zone of hint information
- Doesn’t leave the challenge too guessey, doesn’t leave the challenge too obvious after reading

the description.

- Brute-Force solvability
- Optimized solution should generally be fast

- Brute force can also work, but should take way more time.

Tips - Forensics / Stego

- If you are going to make forensics, don't just make it stego

- If you are going to make stego, make sure it is good stego
- Lots of people dunk on stego for some reason.

- Again, abide by the same rule as crypto

Tips - OSINT

- Goldilocks zone of difficulty
- You want OSINT challenges to be a little guessy.
- Some amount of just looking around on the internet is good, but don't waste people’s time

- No false rabbit holes
- Even though this may happen in reality, it's a crappy thing to do with OSINT challenges.

- Developer tips
- Websites that are OK with OSINT accounts

- Twitter, Reddit, Youtube, Google accounts, Steam, Imgur, Instagram, Make your own
website (google domains -> google sites, super ez and 1$ a month for a year, we will
expense it).

- Websites less OK with OSINT accounts
- Facebook (quick to ban), Linkedin (professional website)

Tips - Networking

- Often these challenges need to be in person

- If you can create a way to do networking challenges over a remote connection

(before I do it), it would make a really good research project ;)

- Not many networking challenges exist, so typical attacks (replay, spoofing, wpa

cracking) are cool to make.

Extra Resources

Extra Resources (https://chal.dev is something we own now)

C Challenge Skeleton

- cskel.chal.dev

Python Hosted Challenge Skeleton

- pyskel.chal.dev

https://chal.dev

