Lattices: Math for Cryptography II
They Have Played Us For Absolute Fools

@nebu @Hassam

sigpwny\{squeamish_ossifrage\}


## Outline

Meta

## Motivation

Danger: Math Ahead


## What this Presentation Is

- An overview of mathematical constructs that are important to cryptography (and common in modern CTFs).
- Intended for people with minimal mathematical background.


## What this Presentation Isn't

- A complete guide on understanding linear algebra, lattices, or algorithms that relate to these topics.
- Particularly difficult...if you don't space out.


## By the End

- Be able to solve simple cryptography CTF challenges.
- Start to see linear algebra, and lattices, everywhere.


## Outline

## Meta

Motivation

Danger: Math Ahead


## Note on Notation and Assumptions

- $\mathbb{N}$ : Natural numbers: $\{1,2,3, \ldots\}$
- $\mathbb{Z}$ : Integers: $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- The $\Pi$ thing we discussed last time, and $\sum$, which are multiplication and addition in for loops, respectively.
- We'll switch a lot between 2 dimensional examples and $n$-dimensional examples without proof, but trust us --these generalizations do hold.

How do we attack crypto?

- Attack the implementation
- Attack the math

How do we attack crypto?

- Attack the implementation
- Attack the math

How do we attack crypto?

- Attack the implementation
- Attack the math

A Word of Warning...
Here's a caricature of Legendre (legend-ray), a very famous number theorist --- he influenced Gauss, who first played with lattices.


## Let's Get Started!

Recall that,

## Definition

A lattice $\mathcal{L}$ is a discrete subgroup of $H$ generated by all integer combinations of the vectors of some basis $B$, that is,

$$
\mathcal{L}=\sum_{i=0}^{m} \mathbb{Z} \mathbf{b}_{\mathbf{i}}=\left\{\sum_{i=0}^{m} z_{i} \mathbf{b}_{\mathbf{i}} \mid z_{i} \in \mathbb{Z}, \mathbf{b}_{\mathbf{i}} \in B\right\}
$$

Here's how we'll do it:
(These slides are borrowed from Thijs Laarhoven at TU/e)

TU/e

## Lattices

What is a lattice?

TU/e

## Lattices

What is a lattice?


Some notes about vectors

- A vector is a collection of numbers: $\mathbf{v}=\left[\begin{array}{l}27 \\ 15\end{array}\right]$


## Some notes about vectors

- A vector is a collection of numbers: $\mathbf{v}=\left[\begin{array}{c}27 \\ 15\end{array}\right]$
- The dot product, $\mathbf{v} \cdot \mathbf{w}$ is the sum of the product of each element in $v$ with each element in $w$. Example:

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
5
\end{array}\right]=3 \cdot 2+4 \cdot 5=26
$$

## Some notes about vectors

- A vector is a collection of numbers: $\mathbf{v}=\left[\begin{array}{l}27 \\ 15\end{array}\right]$
- The dot product, $\mathbf{v} \cdot \mathbf{w}$ is the sum of the product of each element in $v$ with each element in $w$. Example:

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
5
\end{array}\right]=3 \cdot 2+4 \cdot 5=26
$$

- We define the "length" of a vector by it's norm: $\|\mathrm{v}\|=\sqrt{v \cdot v}$. This is a number, not a vector!


## Some notes about vectors

- A vector is a collection of numbers: $\mathbf{v}=\left[\begin{array}{l}27 \\ 15\end{array}\right]$
- The dot product, $\mathbf{v} \cdot \mathbf{w}$ is the sum of the product of each element in $v$ with each element in $w$. Example:

$$
\left[\begin{array}{l}
3 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
5
\end{array}\right]=3 \cdot 2+4 \cdot 5=26
$$

- We define the "length" of a vector by it's norm: $\|\mathrm{v}\|=\sqrt{v \cdot v}$. This is a number, not a vector!
- Recall the Cauchy-Schwarz inequality: $\mathbf{v} \cdot \mathbf{w} \leq\|v\|\|w\|$

Some notes about vectors
We can split a vector up into its components:


## Some notes about vectors

Adding vectors is the same as adding their components.

(Image is shamelessly stolen from NASA)


Some notes about vectors

- Often, we use vectors to represent polynomials.
- What is the result of $\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right] \cdot\left[\begin{array}{c}x^{2} \\ x \\ 1\end{array}\right]$ ?

Some notes about vectors

- Often, we use vectors to represent polynomials.
- What is the result of $\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right] \cdot\left[\begin{array}{c}x^{2} \\ x \\ 1\end{array}\right]$ ?
- $x^{2}+3 x-4$


## Some notes about vectors

- Often, we use vectors to represent polynomials.
- What is the result of $\left[\begin{array}{c}1 \\ 3 \\ -4\end{array}\right] \cdot\left[\begin{array}{c}x^{2} \\ x \\ 1\end{array}\right]$ ?
- $x^{2}+3 x-4$
- Usually, we omit $x$ vector for brevity.

TU/e

## Lattices

What is a lattice?


TU/e.
Latțices
What is a lattice?


## A Grid of Points, Yeah

1. A lattice is indeed an infinite grid of points.
2. It's defined by adding together integral multiples of subsets of the basis vectors.
3. It's a bit different than the $n$-dimensional space $\mathbb{R}^{n}$ since that space is continuous --- lattices are discrete $n$-dimensional spaces.
4. A set of basis vectors uniquely defines a lattice, but we can find other sets of bases that define the same lattice.

TU/e
Latțices
Lattice basis reduction .


## A Problem for You

Given a lattice, find the shortest vector (starting at say, the origin) that ends at a grid point.

Note that the shortest vector problem and the smallest reduced basis problem are identical: the shortest of the bases is necessarily the shortest vector in the lattice, since it generates all the others.

$$
\%
$$

Er. . .

This problem is NP-complete. Let's explore the (exponential time) way to solve it.

$$
\overline{0}
$$

$$
8
$$

c
(b)

TU/e
Fincke-Pohst enumeration
2. Find short vectors for each coefficient of $\boldsymbol{b}_{2}$


TU/e
Fincke-Pohst enumeration
2. Find short vectors for each coefficjent of $b_{2}$

Fincke-Pohst enumeration
2. Find short vectors for each coefficjent of $b_{2}$

Fincke-Pohst enumeration
2. Find short vectors for each coefficient of $b_{2}$

Fincke-Pohst enumeration
2. Find short vectors for each coefficient of $b_{2}$
2. Find short vectors for each coefficient of $b_{2}$

Fincke-Pohst enumeration
2. Find short vectors for each coefficient of $b_{2}$

Fincke-Pohst enumeration
2. Find short vectors for each coefficient of $b_{2}$

Fincke-Pohst/enumeration
2. Find short vectors for each cøefficient of $b_{2}$

Fincke-Pohst/enamqration
2. Find short vectors for each cøefficient of $b_{2}$

## Fincke-Pohst, enumeration

2. Find short vectors for each coefficient of $b_{2}$


## Fincke-Pohst enumeration

3. Find a shortest vector among all found vectors


## Fincke-Pohst enumeration

3. Find a shortest vector among all found vectors


So we solved (albeit very inefficiently...) the SVP. This is an exponential time algorithm --- but like a lot of NP-complete problems, can be approximated in polynomial time.

In short: this hard problem can be approximated easily: we can get a vector that may not be the shortest, but is within a factor of the shortest.

That approximation algorithm for lattice basis reduction (=SVP) is called LLL (Lenstra-Lenstra-Lovász).

Okay, Nebu/Hassam, this is great, but what does it have to do with cryptography?

Sorry, we got carried away...back to some crypto.

## Remember RSA? Good.

- We choose two primes $(p, q)$, and compute $N=p q$, and $\phi(N)=(p-1)(q-1)$.
- Then generate $(e, d)$ such that $d \equiv e^{-1}(\bmod \phi(N))$
- We can encrypt a number $m$ as

$$
c \equiv m^{e} \quad(\bmod N)
$$

- We can decrypt a message $c$ as

$$
m \equiv c^{d} \quad(\bmod N)
$$

Why is This Secure Again?

All that is sent over is ( $(\mathbb{N}, \mathrm{e})$, c). Given this tuple, an attacker cannot find $m$ without factoring $N$ (why?).

```
Let's Factor \(N\)
```

No, not the way @Husnain did it...
$N=p q$, a product of primes. Factor $N$.

1. Let's say you have $p$ and $q$.
2. Oh, that's true, your problem's solved.

Hm, Maybe A Little Less Information

1. What if I give you just $p$.

Hm, Maybe A Little Less Information

1. What if I give you just $p$.
2. Hah! But $q$ is just

$$
q=\frac{N}{p}
$$

3. You're getting good at this.

What About Now?


You get some bits
(enough that you can't brute force, of course)
of $p$--- not all, and nothing about $q$.

## Let's See What We Can Do

Say we know the top $a$ bits of $p$. Then,

$$
p=a+x
$$

where $x$ is the unknown bits we have to solve for. As a polynomial:

$$
p=f(x)=a+x
$$

Can't enumerate all $x$ 's, so we pay Amazon to do it for us.

No. We Math.

$$
f(x)=p=a+x
$$

Let's reframe the polynomial as a modular one:

$$
f(x) \equiv a+x \equiv 0 \quad \bmod p
$$

## Guess What?

We're actually much worse at finding roots of modular polynomials than ones over the integers.

Did we just shoot ourselves in the foot?

## Outline

Meta<br>\section*{Motivation}

Danger: Math Ahead

## We Want to Show You Some More Cool Math

We present the Howgrave-Graham (1997, Section 2) method of finding small roots of an irreducible monic modular polynomial.

## Don't Get Notation Paralysis!

- polynomial: recall initial slides
- monic: leading coefficient 1 and univariate
- univariate: in one variable
- irreducible: no cheap factoring tricks
- modular: modulo some integer

So a polynomial that looks like this:

$$
p(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{o} \quad(\bmod N)
$$

That's exactly the kind of polynomial we're solving:

$$
f(x)=x+a \quad(\bmod p)
$$

## Howgrave-Graham

Let $p(x)$ be some polynomial

$$
p(x)=\sum_{i=0}^{d-1} a_{i} x^{i} \quad\left(\bmod b^{k}\right)
$$

where $b, k \in \mathbb{N}$. We want to find a root $x_{0}$ that is less than a bound $X$. If the following two conditions are (both) true:

$$
\begin{aligned}
& \text { 1. } p\left(x_{0}\right)=0\left(\bmod b^{k}\right) \\
& \text { 2. }\|p(x X)\| \leq b^{k} / \sqrt{d}
\end{aligned}
$$

Then $p\left(x_{0}\right)=0$ over all the integers, $\mathbb{Z}$.

## Proof

Define two vectors,

$$
\begin{aligned}
\mathbf{v} & =\left(\begin{array}{llll}
1, & x_{0} / X, & x_{0}^{2} / X^{2}, \ldots, & x_{0}^{d-1} / X^{d-1}
\end{array}\right) \\
\mathbf{w} & =\left(\begin{array}{lll}
a_{0}, & a_{1} X, & a_{2} X^{2}, \ldots, \\
a_{d-1} X^{d-1}
\end{array}\right)
\end{aligned}
$$

Confirm that the dot product $\mathbf{v} \cdot \mathbf{w}$ is just $p\left(x_{0}\right)$.

## Proof

Define two vectors,

$$
\begin{aligned}
\mathbf{v} & =\left(\begin{array}{lll}
1, & x_{0} / X, & x_{0}^{2} / X^{2}, \ldots, \\
\mathbf{w} & =\left(\begin{array}{lll}
a_{0}, & a_{1} X, & a_{2} X^{2}, \ldots, \\
& a_{d-1} X^{d-1}
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

Also note that the 'maximum' possible $\mathbf{v}$ is

$$
\mathbf{v}=(1,1,1, \ldots, 1)
$$

Let's Use Cauchy-Schwarz on v•w

$$
\begin{gathered}
\mathbf{v}=\left(\begin{array}{lll}
1, & x_{0} / X, & x_{0}^{2} / X^{2}, \ldots, \\
\mathbf{w}=\left(\begin{array}{ll}
a_{0}, & a_{1} X, \\
a_{2} X^{2}, 1
\end{array} X^{d-1}\right.
\end{array}\right) \\
|\mathbf{w} \cdot \mathbf{v}|<\|w\|\|v\|
\end{gathered}
$$

Here,

$$
\begin{gathered}
\|w\| \leq \sqrt{1+1+\cdots+1}=\sqrt{d} \\
\|v\|=\sqrt{a_{0}^{2}+a_{1}^{2} X^{2}+\cdots+a_{d-1}^{2} X_{d-1}^{2}}=\|p(x X)\|
\end{gathered}
$$

Let's Use Cauchy-Schwarz on v•w

$$
\begin{gathered}
\mathbf{v}=\left(\begin{array}{cc}
1, & x_{0} / X, \\
\mathbf{w} & x_{0}^{2} / X^{2}, \ldots, \\
\mathbf{w}=\left(\begin{array}{ll}
a_{0}, & a_{1} X,
\end{array} a_{0}^{d-1} / X^{d-1}, \ldots,\right. & a_{d-1} X^{d-1}
\end{array}\right) \\
|\mathbf{w} \cdot \mathbf{v}|<\|w\|\|v\|
\end{gathered}
$$

Here,

$$
\begin{gathered}
\|w\| \leq \sqrt{1+1+\cdots+1}=\sqrt{d} \\
\|v\|=\|p(x X)\| \leq b^{k} / \sqrt{d}
\end{gathered}
$$

by condition (2).

Let's Use Cauchy-Schwarz on v•w

$$
\begin{gathered}
|\mathbf{w} \cdot \mathbf{v}|<\|w\|\|v\| \\
\|w\| \leq \sqrt{d} \\
\|v\|=\|p(x X)\| \leq b^{k} / \sqrt{d}
\end{gathered}
$$

Finally, using Cauchy-Schwarz:

$$
\left|p\left(x_{0}\right)\right|=|\mathbf{w} \cdot \mathbf{v}|<\sqrt{d} \frac{b^{k}}{\sqrt{d}}=b^{k}
$$

Wait, So What I'm Saying Is...

$$
p\left(x_{0}\right) \equiv 0\left(\bmod b^{k}\right) \text { and }\left|p\left(x_{0}\right)\right|<b^{k} \text { mean that } \ldots
$$

## Wait, So What I'm Saying Is...

$$
\left.p\left(x_{0}\right) \equiv 0\left(\bmod b^{k}\right) \text { and }\left|p\left(x_{0}\right)\right|<b^{k} \text { mean that. . .p( } x_{0}\right) \text { must be }
$$

$$
=0 \text { over all integers. }
$$

And now, this modular polynomial is easy to solve since it's in the integers.

## Wait, But What Was The Point?

$f(x) \equiv 0 \bmod p$ doesn't satisfy this theorem's bounds anyway. Recall that for polynomial $p(x)$ being solved for, $\|p(x X)\| \leq b^{k} / \sqrt{d}$, which $f$ doesn't satisfy.

## A possible solution

What if we can construct another polynomial $g(x)$ using $f(x)$ that has the same root $x_{0}$ we care about, but is "smaller" and therefore:

- Obeys the bounds of the theorem, and thus
- Roots are easy to enumerate since it's over the integers instead of a modulo.


## How do we create $g(x)$ ?

We want a $g(x)$ such that $g\left(x_{0}\right) \equiv 0\left(\bmod b^{k}\right)$ (and of course that it works with Howgrave-Graham). Or,

$$
g(x) \in b^{k} \mathbb{Z}
$$

Point is, none of these operations change the meaning of $g$, since $f\left(x_{0}\right)=0 \bmod b^{k}$ for the root we want.

## How do we create $g(x)$ ?

We want a $g(x)$ such that $g\left(x_{0}\right) \equiv 0\left(\bmod b^{k}\right)$ (and of course that it works with Howgrave-Graham). Or,

$$
\begin{aligned}
& g(x) \in b^{k} \mathbb{Z} \\
& g(x) \in b^{k} \mathbb{Z}+b^{k} f(x) \mathbb{Z}
\end{aligned}
$$

Point is, none of these operations change the meaning of $g$, since $f\left(x_{0}\right)=0 \bmod b^{k}$ for the root we want.

## How do we create $g(x)$ ?

We want a $g(x)$ such that $g\left(x_{0}\right) \equiv 0\left(\bmod b^{k}\right)$ (and of course that it works with Howgrave-Graham). Or,

$$
\begin{aligned}
& g(x) \in b^{k} \mathbb{Z} \\
& g(x) \in b^{k} \mathbb{Z}+b^{k} f(x) \mathbb{Z} \\
& g(x) \in b^{k} \mathbb{Z}+b^{k} f(x) \mathbb{Z}+b^{k} x f(x) \mathbb{Z}
\end{aligned}
$$

Point is, none of these operations change the meaning of $g$, since $f\left(x_{0}\right)=0 \bmod b^{k}$ for the root we want.

How do we create $g(x)$ ?

We want a $g(x)$ such that $g\left(x_{0}\right) \equiv 0\left(\bmod b^{k}\right)$ (and of course that it works with Howgrave-Graham). Or,

$$
\begin{aligned}
& g(x) \in b^{k} \mathbb{Z} \\
& g(x) \in b^{k} \mathbb{Z}+b^{k} f(x) \mathbb{Z} \\
& g(x) \in b^{k} \mathbb{Z}+b^{k} f(x) \mathbb{Z}+b^{k} x f(x) \mathbb{Z} \\
& g(x) \in b^{k} \mathbb{Z}+b^{k} f(x) \mathbb{Z}+b^{k} x f(x) \mathbb{Z}+b^{k} x^{2} f(x) \mathbb{Z}+\cdots
\end{aligned}
$$

Point is, none of these operations change the meaning of $g$, since $f\left(x_{0}\right)=0 \bmod b^{k}$ for the root we want.

## And Now, The Voilà

Remember the shortest vector problem?

We can put in coefficients to $(x X)^{k} f(x)$ as $k \in \mathbb{Z}$ bases for a lattice into LLL and find (one of) the shortest vector bases for the lattice.

## Wait, what just happened?

Remember, vectors can represent polynomials.
We've made a bunch of polynomials that have the same properties as this ideal $g(x)$, but they're not the right size for Howgrave-Graham. But, using LLL, we can find a small enough vector that it might work!

## To Summarize

- We know $r \leq 2^{\text {evil }}=X$, where 'evil' is the number of bits that were wiped out. This is an upper bound.
- Construct matrix $M$ so that:

$$
M=\left[\begin{array}{ccc}
X^{2} & X a & 0 \\
0 & X & a \\
0 & 0 & N
\end{array}\right]
$$

- Run LLL on this matrix, interpreting rows as basis vectors, get output $g(x X)$.
- Use the shortest vector as coefficients of $g(x)$, which is not a modular polynomial.
- Enumerate roots $r_{i}$ of $g(x)$ and check for $\left(a+r_{i}\right) \mid N$.


## Whaddya Mean, That's Voilà?

Two observations:

1. Our lattice is made up of integral multiples of the basis vectors, which are coefficients of $f(x X)$. The shortest basis generated by LLL, interpreted as coefficients of $g(x X)$, will have a set of solutions on this lattice as well: so we retain all the information $f(x)$ gives us.
2. Recall that Howgrave-Graham requires that $\|g(x X)\| \leq b^{k} / \sqrt{d}$, which is true, since the norm of the shortest output vector basis from LLL is, well, short. ${ }^{1}$
[^0]
## Whaddya Mean, That's Voilà?

Thus, we can take $g(X x)$, remove the $X$ terms to get $g(x)$. Since it satisfies Howgrave-Graham, solve it over the integers (easy), and check all the roots we get for dividing $N$. More precisely,...

## To Summarize

The matrix $M$ was constructed with values $x X f(x X), f(x X)$, and $b^{k} \mathbb{Z}=N$. Recall $f(x)=a+x$. These written out are:

$$
\begin{aligned}
x X f(x X)= & (x X)^{2}+X x a+0 \\
f(x X)= & 0+x X+a \\
& 0+0+N
\end{aligned}
$$

Taking the coefficients and putting them into a matrix:

$$
M=\left[\begin{array}{ccc}
X^{2} & X a & 0 \\
0 & X & a \\
0 & 0 & N
\end{array}\right]
$$

That's where $M$ came from: it generates the lattice of the coefficients scaled by $X^{k}$.

Okay, how do we use this?

What if we can leak some information about $(p, q)$ ?
$\mathrm{p}, \mathrm{q}, \mathrm{e}=$ random_prime(2^512), random_prime(2^512), 17
n , tot $=\mathrm{p} * \mathrm{q},(\mathrm{p}-1) *(\mathrm{q}-1)$
d = inverse_mod(e, tot)
print(p - p \% 2^100, q - q \% 2^100)
We can recover $p$ and $q$ even though we're missing a lot of their bits!


[^0]:    ${ }^{1}$ Not exactly accurate --- if you figure out the bounds correctly, it's short enough.

