Week 7

Crypto II

Anakin

Outline

Chinese Remainder Theorem

Elliptic Curve Diffie-Hellman

RSA

Announcements

- ACM Cleanup!

sigpwny\{R1v35t_5ham1r_4d13man\}

 ctf.sigpwny.com

Section 1
Chinese Remainder Theorem

Small versus Large n

- Remember modular arithmetic from last time?
- Since we are looking at values mod n for some n, we lose information

Small versus Large n

- Suppose I ask you to find $4 * 4 \bmod 3$
- You would know that the result is 1
- Now suppose I tell you $x \equiv 1 \bmod 3$ and I told you to find $x / 4$
- This is much harder

Small versus Large n

- Now look at $4 * 4 \bmod 20$
- Again you would know that the result is 16
- Now suppose I tell you $x \equiv 16 \bmod 20$ and I told you to find $x / 4$
- This is much easier!
- Can we use this to our advantage?

The Chinese Remainder Theorem

- This first appeared in ancient Chinese texts ${ }^{1}$ dating back to the 3rd century
- Let's try to find x such that $0 \leq x \leq 105$. Furthermore we are given the following information

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 5) \\
x \equiv 2 & (\bmod 7)
\end{array}
$$

- The Chinese Remainder Theorem tells us that $x \equiv 23$ $(\bmod 3 * 5 * 7=105)$

[^0]

The Chinese Remainder Theorem

This can be stated more generally. Suppose we have the following information:

$$
\begin{array}{cc}
x \equiv n_{1} & \left(\bmod p_{1}\right) \\
x \equiv n_{2} & \left(\bmod p_{2}\right) \\
\vdots & \\
x \equiv n_{k} \quad\left(\bmod p_{k}\right)
\end{array}
$$

Such that p_{i} and p_{j} share no common factors whenever $i \neq j$ Then we have a unique solution for $x\left(\bmod p_{1} p_{2} \cdots p_{k}\right)$

Why Do We Care?

- This means that any cryptographic system using modular arithmetic (read: any modern cryptographic system) has to be careful with its primes
- Consider smooth primes: Primes p such that $p-1$ has many small factors.
- Then we can use Pohlig-Hellman to attack this prime
- The Chinese Remainder Theorem and Pohlig-Hellman was used in a report in 2015 called Logjam to attack TLS/SSL.

Section 2
Elliptic Curve Diffie-Hellman

Old and Boring: DH

Public parameters: generator g and prime p

$$
\begin{gathered}
\text { Alice } \\
a \stackrel{\$}{\leftarrow}\{2, \ldots, p-2\} \\
A=g^{a}(\bmod p)
\end{gathered}
$$

$$
\begin{gathered}
B \mathrm{Bob} \\
\stackrel{\ddagger}{\leftarrow}\{2, \ldots, p-2\} \\
B=g^{b}(\bmod p)
\end{gathered}
$$

$$
S=B^{a}(\bmod p)
$$

$$
S=A^{b}(\bmod p)
$$

New and Cool: ECDH

- Who says we have to use plain numbers or even just modular arithmetic
- Much of modern security uses elliptic curves
- These are curves of the form $y^{2}=x^{3}+a x+b$
- The name comes from when mathematicians were trying to figure out general formulas for arc length of ellipses. Equations of this form came up alot
$y^{2}=x^{3}+a x+b$

Neutral element $\mathcal{O} \quad$ Inverse element $-P$

Addition $P+Q$
"Chord rule"

Doubling $P+P$
"Tangent rule"

Real Numbers are Bad

$y^{2}=x^{3}-2 x+1$ over \mathbb{R}

$y^{2}=x^{3}-2 x+1(\bmod 89)$

Discrete Log

- Normal Discrete Log Problem:
- Given g, A, and prime p, find a such that $g^{a} \equiv A(\bmod p)$
- Elliptic Curve Discrete Log Problem:
- Given point G, A, and prime p, find a such that $A=a * G$ over points mod p

Why is this hard??

Yes, this is Miniclip 8 Ball Pool

Why is this hard??

One More Time

Public parameters: generator g and prime p

Alice
$a \stackrel{\$}{\leftarrow}\{2, \ldots, p-2\}$
$A=g^{a}(\bmod p)$
$S=B^{a}(\bmod p)$

$$
\begin{aligned}
& \text { Bob } \\
& b \stackrel{\$}{\leftarrow}\{2, \ldots, p-2\} \\
& B=g^{b}(\bmod p)
\end{aligned}
$$

$$
S=A^{b}(\bmod p)
$$

Elliptic Curve Diffie-Hellman

Public parameters: curve $y^{2}=x^{3}+a^{\prime} x+b^{\prime}$, generator point G and prime p. We do all the following math mod p. We denote the number of points on the curve as $\#(E)$.

$$
\begin{gathered}
\text { Alice } \\
a \stackrel{\$}{\leftarrow}\{2, \ldots, \#(E)-2\} \\
A=a * G
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{Bob} \\
\stackrel{\&}{\leftarrow}\{2, \ldots, \#(E)-2\} \\
B=b * G
\end{gathered}
$$

$$
S=a * B(\bmod p)
$$

$\stackrel{\$}{\leftarrow}=$ "uniform random sample from"

Section 3
RSA

Asymmetric Encryption

- XOR and Diffie-Hellman were symmetric encryption
- What about asymmetric encryption?
- Rather than a shared secret key, we can have a public key that anyone can use to encrypt a message to send us, but only we can decrypt the message
- RSA is one such asymmetric cryptosystem.

Totients and Euler's Theorem

- We call $\phi(n)$ Euler's "totient" function
- $\phi(n)=$ the number of numbers ≥ 0 that share no factors with n
- Euler's Theorem: If a and n share no factors, then $a^{\phi(n)} \equiv 1(\bmod n)$

This theorem is the basis for the RSA cryptosystem

The Hard Problem In RSA

- Multiplication is easy
- Factoring is hard
- let p and q be large primes.
- If $n=p * q$, then $\phi(n)=(p-1) *(q-1)$
- Given n, since p and q are large, factoring is hard!

Thus, finding $\phi(n)$ is hard

The RSA Cryptosystem

- Let e be a public exponent, usually $e=2^{16}+1=65537$
- Alice generates large (> 256 or even >512 bits) secret primes p, q
- Alice then calculates $n=p * q$ and releases it as a public key. Then they calculate $\phi(n)=(p-1) *(q-1)$ as a private key.
- Knowing $\phi(n)$, compute d such that $e d \equiv 1(\bmod \phi(n))$
- If you know $\phi(n)$, this is fast using the Extended Euclidian Algorithm
- Bob computes $c=m^{e}$ and sends it to Alice
- Then Alice can compute $c^{d} \equiv m(\bmod n)$

Correctness

- Remember, modular arithetic is arithmetic using remainders
- So if $a \equiv b(\bmod n)$ then we should have that $a=b+k n$ for some k.
- ed $\equiv 1(\bmod \phi(n))$. So ed $=1+k \cdot \phi(n)$ for some k
$c^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{1+k \cdot \phi(n)} \equiv m *\left(m^{\phi(n)}\right)^{k} \equiv m * 1^{k} \equiv m \quad(\bmod n)$

Attacks

- Small primes
- Smooth primes
- Large public n
- Oracles
- Ducks (Protip: Don't use pastebins as secret storage)
- etc... (Google is your best friend)

Next Meetings

2022-10-20 - This Thursday

- Rev II with Richard
- angr + Z3

2022-10-23 - Next Sunday

- Research Presentation from Mingjia
- Stealing Hospital Information

[^0]: ${ }^{1}$ Sunzi Suanjing

