
this is the part where ravi
writes the flag on the board

this slide is here so we don’t forget

announcements:

SQUARECTF we’re going hard see
#squarectf in discord

https://2018.squarectf.com/

CYPHERCON

APRIL 11/12, 2019 MILWAUKEE

i’m getting a discount code for
$-25, do not buy tickets yet

buy the digital badge it’s super
cool

https://www.google.com/url?q=https://2018.squarectf.com/&sa=D&source=editors&ust=1679634332359888&usg=AOvVaw0K_ywmJ1iHRoL4mQ-KMwy5

Format String Vulnerabilities

When output becomes input

Goal: Leak & Modify Stack

Leak & Modify

Leak: Local variables, arguments

Modify: Program execution (vars, or
return addresses)

Review: The Stack

- Last in, first out
- Local variables
- Linkage

Printf’s Perspective

- Doesn’t know what arguments will be
- Expects a “format string” to tell

it what to do

Example:

printf(“%d %d %d”, 1, 2, 3);

1 2 3

Format String Examples

printf(“Hello World!”);

printf(“This is a newline: \n”);

printf(“This is an integer argument: %d”, 5);

printf(“This is an integer in hex: %x”, 5);

printf(“This is a character arg: %c”, ‘a’);

printf(“This is a string arg: %s”, “This is a string”);

Format String Syntax

%d: Print the next thing on the stack as an integer

%x: Print the next thing on the stack as hex

%c: Print the next thing on the stack as an ASCII character

%s: Print the next thing as a string

(Note: for %s the string’s starting address must be passed,
not the entire string)

Exploit

- What’s an argument? What is just
on the stack?

- Same format string, different
call, very different output:

printf (“%d %d %d”, 1);

1 [1st local var] [2nd local var]

Typical Exploit

1. Find a call to printf using user input as format string
2. Create malicious format string to leak or modify data
3. Profit?

sigpwny.com
Challenge 1:

Leak a stack variable

Challenge 1

Vulnerable call:
printf(input_buffer);

%x gives us what looks like an
address... Possibly a string?

sigpwny.com
Challenge 2:

Leak a variable far down the stack

Challenge 2

Vulnerable call:
printf(input_buffer);

The flag is further down the
stack... Use multiple format
specifiers to see more?

What if the buffer is too small?

%(number)$x will print the “number”-th argument.

Example:

printf(“%3$s”, “arg 1”, “arg 2”, “arg 3”);

Will print “arg 3,” since “arg 3” is the 3rd argument.

What if the buffer is too small?

%(number)$x will print the “number”-th thing on the stack.

Example:

printf(“%4$x”, 0x1, 0x2, 0x3);

Will print whatever was pushed on the stack prior to printf.

sigpwny.com
Challenge 3:

Leak a variable with a small format string

Challenge 3

The variable we want is at an
offset of 11 from the format
string.

If we could do %x 11 times, we
would get the flag.

How can we effectively do %x
more times using only 6
characters?

Modifying Contents

%n: Writes the number of characters output to an address
passed on the stack.

Example:

int x;

printf(“12345%n”, &x);

Stores ‘5’ in x, since 5 characters were written.

Modifying Contents

%n can be used to overwrite any address on the stack with
new information!

sigpwny.com
Challenge 4:

Modify a variable

Challenge 4

- dont_modify_me’s address is on the stack and can be
viewed using %6$x

- Using %n instead of %x will overwrite dont_modify_me’s
value with the number of bytes written

