
Reverse Engineering II
FA2023 Week 06 • 2023-10-05

Richard, Pete, Henry

- DRM circumvention with Ojas this sunday
- No CTF this weekend
- Fall CTF solutions will be released soon™
- Fuzzing team meeting after this at 8PM

- Weekly time moved to Thursday

Announcements

sigpwny{nsa_backdoor?}

ctf.sigpwny.com

Table of Contents

- Leaderboard / helper callout
- RE

- Recap: What is reverse engineering?
- Recap: Assembly
- Compilation / Decompilation
- Static analysis & optimization

- Ghidra
- Demo

- GDB
- Demo

If you haven’t installed
Ghidra yet, start
downloading it through the
slides here!
sigpwny.com/rev_setup23

https://sigpwny.com/rev_setup23

Scoreboard
Top 10 - differences from Week 4

Want to be a helper?
Congratulate yourself - you made it to week 6 of meetings 😎😎😎😎
SIGPwny has a flipped leadership model - you get invited to become a helper

Some things we look for
- You frequently attend meetings and are actively engaged with the meeting content
- You interact with other club members
- You have a learning/teaching-focused mindset

You demonstrate an interest in improving the club. This can be shown in
various ways, such as contributing to ongoing projects, sharing your
cybersecurity knowledge by running a meeting / creating challenges /
participating in CTFs, or expressing interest in {design, branding, outreach, or
marketing}

– talk to an admin / send a message on discord to let us know you want to help!
- See sigpwny.com/faq for more details

http://sigpwny.com/faq

Recap: Reverse Engineering

- Reverse Engineering: Figure out how a program works

- Two major (non-exclusive) techniques
- Static analysis (today: Ghidra)
- Dynamic analysis (today: GDB)

- Different strategies for RE
- Today: C / C++ on Linux ("ELF binaries")
- Later: Java Rev, Rev III (Side channels, VMs, Symbolic execution)

Source code

Compiler
(Clang) Executable

(assembly code)

Compilation

Recap: Assembly
Sam’s slides from Sunday

https://sigpwny.com/meetings/fa2023/2023-10-01/

What is Assembly?

- A human-readable abstraction over CPU machine codes

010010000000010111011110110000000011011100010011

48 05 DE C0 37 13

add rax, 0x1337c0de

What is Assembly?
method:

 push rbp

 mov rbp, rsp

 mov DWORD PTR [rbp-20], edi

 mov DWORD PTR [rbp-4], 6

 mov BYTE PTR [rbp-5], 99

 mov edx, DWORD PTR [rbp-20]

 mov eax, DWORD PTR [rbp-4]

 add eax, edx

 pop rbp

 ret

int method(int a){

 int b = 6;

 char c = 'c';

 return a+b;

}

Basic CPU Structures

Instruction Memory Registers Stack

Compilation / Decompilation

We can go from C code to assembly…

https://godbolt.org/

Now go from assembly to C code 😈
Challenge: What does this do?

Not perfect!

Ghidra to the rescue!

- Open source disassembler/decompiler
- Disassembler: binary machine code to

assembly
- Decompiler: assembly to pseudo-C

- Written by the NSA 😳

Ghidra to the rescue!

Decompilation not always the
same! Many ways to write
equivalent code

Common Optimizations

Loading an array with bytes
- Loading first 8 bytes simultaneously into stack (in one instruction)

48 65 6c 6c 6f 20 77 6f 72 6c 64

"ow olleH" in hex

"dlr" in hex

Challenge: why is the text of the
decoded number backwards?

Common Optimizations (Cont.)

Modulo replaced with mask
- % 4 replaced with & 0b11 (Taking the last two bits of unsigned int)

Ghidra Follow Along
Open Ghidra!

sigpwny.com/rev_setup23

Download "debugger" from https://ctf.sigpwny.com/challenges

https://sigpwny.com/rev_setup23
https://ctf.sigpwny.com/challenges

- Get started:
- View all functions in list on left side of screen inside “Symbol Tree”. Double

click main to decompile main
- Decompiler:

- Middle click a variable to highlight all instances in decompilation
- Type “L” to rename variable (after clicking on it)
- “Ctrl+L” to retype a variable (type your type in the box)
- Type “;” to add an inline comment on the decompilation and assembly
- Alt+Left Arrow to navigate back to previous function

- General:
- Double click an XREF to navigate there
- Search -> For Strings -> Search to find all strings (and XREFs)
- Choose Window -> Function Graph for a graph view of disassembly

Ghidra Cheat Sheet

GDB (Dynamic Analysis)

- Able to inspect a program's variables & state as it runs
- Set breakpoints, step through, try various inputs
- Debugging analogy: print statements after running

Dynamic Analysis with GDB

- Run program, with the
ability to pause and
resume execution

- View registers, stack,
heap

- Steep learning curve
- chmod +x ./chal to

make executable

git clone

https://github.com

/pwndbg/pwndbg

cd pwndbg

./setup.sh

pwndbg

GDB Follow Along
Same file as Ghidra follow along (debugger)

Windows users - WSL
Intel mac users - pwn-docker
M1/2 mac users - still broken

https://github.com/sigpwny/pwn-docker
https://stackoverflow.com/questions/77124810/gdb-crashes-debugging-x86-binary-under-rosetta-2-apple-virtualization-framewor

- b main - Set a breakpoint on the main function
- b *main+10 - Set a breakpoint a couple instructions into main

- r - run
- r arg1 arg2 - Run program with arg1 and arg2 as command line arguments. Same as

./prog arg1 arg2
- r < myfile - Run program and supply contents of myfile.txt to stdin

- c - continue
- si - step instruction (steps into function calls)
- ni - next instruction (steps over function calls) (finish to return to caller function)
- x/32xb 0x5555555551b8 - Display 32 hex bytes at address 0x5555555551b8

- x/4xg addr - Display 4 hex “giants” (8 byte numbers) at addr
- x/16i $pc - Display next 16 instructions at $rip
- x/s addr - Display a string at address
- x/4gx {void*}$rcx - Dereference pointer at $rcx, display 4 QWORDs
- p/d {int*}{int*}$rcx - Dereference pointer to pointer at $rcx as decimal

- info registers - Display registers (shorthand: i r)
- x86 Linux calling convention* ("System V ABI"): RDI, RSI, RDX, RCX, R8, R9

*syscall calling convention is RDI, RSI, RDX, R10, R8, R9

GDB Cheat Sheet gdb pwndbg

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md

Pwndbg cheat sheet

- emulate # - Emulate the next # instructions
- stack # - Print # values on the stack
- vmmap - Print memory segments (use -x flag to show only executable segments)
- nearpc - Disassemble near the PC
- tel <ptr> - Recursively dereferences <ptr>
- regs - Use instead of info reg (gdb's register viewing)

Go try for yourself!

- https://ctf.sigpwny.com
- Start with Crackme 0
- Practice practice practice! Ask for help!

https://ctf.sigpwny.com

Next Meetings

2023-10-08 - This Sunday
- DRM circumvention with Ojas this sunday
2023-10-12 - Next Thursday
- Crypto I
- Learn the fundamentals of cryptography and encryption!

sigpwny{nsa_backdoor?}
ctf.sigpwny.com

Thanks for listening!

