
Bypassing TCC on macOS

Rohit Chatterjee

1 Overview

I have found a vulnerability in the macOS System Migration framework that allows a program running as root
without any existing TCC permissions to silently gain the Full Disk Access TCC permission. Since programs with
Full Disk Access can modify any user’s TCC database, this vulnerability also allows programs to silently gain any
user-specific TCC permission, including camera and microphone access. I created a proof-of-concept (PoC) exploit
that runs a specified command with Full Disk Access, along with a script that grants camera and microphone access
to a specified app. Both have been tested on a clean install of macOS 12.4.

Figure 1: The PoC lists the contents of the directory containing the system-wide TCC database, which is not readable
without Full Disk Access.

1

Figure 2: The PoC runs the included script to grant camera and microphone access to Chrome.

2 The Exploit

The PoC first grants Full Disk Access to sshd-keygen-wrapper (the SSH daemon on macOS) using systemmigrationd,
a binary with the com.apple.rootless.install.heritable entitlement. This gives Full Disk Access to any SSH
connection to the system, so the PoC then runs a payload with Full Disk Access through the system’s SSH client.

The System Migration framework on macOS lets users transfer their files, apps, and settings from another computer
or Time Machine backup. This framework processes migration requests through systemmigrationd, which loads a
plugin, TCCMigration. This plugin, as its name suggests, migrates TCC settings. After decompiling the plugin in
Ghidra, I found something that caught my attention.

uVar6 = __auth_stubs :: _SMJobIsEnabled(uVar8 ,"com.openssh.sshd" ,&local_91);

· · ·

iVar2 = __auth_stubs :: _TCCAccessSetForPath(

*(undefined8 *)__got :: _kTCCServiceSystemPolicyAllFiles ,

"/usr/libexec/sshd -keygen -wrapper",uVar6);

The second line grants Full Disk Access (kTCCServiceSystemPolicyAllFiles) to the SSH daemon, but only if it is
already loaded, which is checked by the first line. The PoC loads the SSH daemon with the following shell command:

launchctl load -w /System/Library/LaunchDaemons/ssh.plist

2

A migration can be started programmatically by placing a file in the directory /Library/SystemMigration/Queue.
Any program with root privileges can do this, since the directory is not protected by SIP. The file must contain a
migration request encoded as a ”property list,” or plist, containing information about the request, including its type,
what data to transfer, and the source system to transfer from. The TCCMigration plugin only runs if the request’s
”type” property has a value of either 1 or 4. If the source system is set to a random UUID, then the migration fails,
but not before running TCCMigration and granting Full Disk Access to the SSH daemon.

Once the SSH daemon has Full Disk Access, a malicious program on the system can gain Full Disk Access by
logging into any user via SSH. By default, the SSH daemon requests the user’s password, which the program
does not necessarily know. The PoC gets around this by generating a SSH key pair and saving the public key to
~/.ssh/authorized keys. To regain root privileges inside the SSH session, the PoC executes its payload through a
copy of /bin/zsh that has the setuid bit set.

To summarize, the PoC first loads the SSH daemon, then creates a file containing a malicious migration request and
places it in /Library/SystemMigration/Queue, which starts systemmigrationd. Once the SSH daemon has Full
Disk Access, the PoC executes its payload in a SSH session.

This vulnerability can be fixed by protecting the directory /Library/SystemMigration under SIP and requiring an
entitlement (like com.apple.rootless.storage.SystemMigration) to modify it.

3

	Overview
	The Exploit

