Math for Cryptography I
They Have Played Us For Absolute
Fools
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What this Presentation Is

® An introduction to the mathematics
that's useful for cryptography.

® A way to put Husnain's excellent
presentation on factoring in context.

® Hopefully, give you a better idea of why
things like this happen:




What this Presentation Isn't

® Challenge heavy

® Interesting for math people. The later
ones in this series probably will be.
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By the End

® Not be scared of all the math, and
actually enjoy crypto.

® Gain a deeper understanding of why
mucking around with numbers creates
elegant systems that can hide
information reliably.

It all ties together at the end, I promise,
even though we explore seemingly unrelated
ideas.
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Note on Notation

e IN: Natural numbers: {1,2,3,...}
® 7Z: Integers: {..,—3,-2,—1,0,1,2,3,...}
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A Problem

Take a number n€ IN. Add its digits to get
another number n/. Add the digits of n/.
Keep doing this till you get an n that is
one digit long and return that n.

® 65536
® 25

e 7
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Solution

de 9, n=0 mod 9
" |n mod 9, otherwise

def sumdigit(m: int) -> int:
if n % 9 == 0:
return 9
return n % 9



Why Does This Work

Number theory --- stay tuned.
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Divides

° 5|25
° 6|54
° 7415

For a,b€ Z say a| b if there exists a c€Z
such that b= ac.

a is called a divisor or factor of b.
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Quiz!

True or false:
25125

45 | 900
34
37111
711001
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Greatest Common Divisor

For two integers, the greatest common
divisor is the largest integer that divides
both of them.

For instance, gcd(54,36) = 18.
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How To Compute a GCD

Naively, write out the list of all divisors
of both integers, and find the maximum
common element in these two arrays.

54: [1, 54, 2, 27, 3, 18, 6, 9]
36: [1, 36, 2, 18, 3, 12, 4, 9, €]

Technically I've only listed positive
divisors.
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Programming Problem

How do you:
1. Break a number into its divisors.

2. Find the common maximum of two unsorted
arrays.
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Solution

1. Refer to the factoring meeting. Spoiler:
it's neither fast or easy.

2. Put the first array in a hash table,
then go through the second array keeping
track of the largest value that's in the
table.
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Euclidean Algorithm

Brilliant insight based on the idea that
ged (a, b) = ged (b, r) where r is the remainder
you get when you divide a by b.

The algorithm is to keep repeating the step
ged (a, b) with ged (b, 7) until you get an r
that is 0. Once that happens, the previous r
is the GCD.
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Euclidean Algorithm

94=36-1+18
36=18-14+0



Euclidean Algorithm

54 =36-1+[18]

36=18-14+0

18 is our GCD.
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Euclidean Algorithm

Don't worry too much about why this works
-—-— it is enough to recognize that it does
and to understand that computing the GCD is
computationally efficient! since it's mostly
floor division and getting remainders in a
loop.

We'll come back to this later.
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What Are Integers Made 0f7

The idea of divisibility suggests that
integers are 'made of', well, products of
other integers.

288 =4-72

Which are in turn made of other integers.

988 = (2-2) - (18 - 4)

And so on..
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What Are Integers Made 0f7

At some point you'll reach some numbers you
can't split up anymore.

288 = 2° . 32

These are the primes, and are the LEGO®
blocks of all the integers.
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Fundamental Theorem of Arithmetic

States that all integers can be uniquely
represented as a product of prime powers.
That is, for all n€ Z, n has a unique
representation of the form:

k
=10
=1

where all p; are prime and all a; € IN.

This is just fancy math talk for the idea
that all integers are formed from prime

number LEGO® blocks multiplied together. KCEES



By The Way..

That [] thing looks scary, but it's just
multiplication in a for loop.

7:2

1=

4
1
is the same thing as

prod = O
for i in range(1,5):
prod *= i**2
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Coprimality

Two numbers are coprime if their greatest
common divisor is 1.

Alternately, you can view it as the fact the
numbers don't have any LEGO® prime pieces in
common.

5 and 8 are coprime, 4 and 16 aren't.
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Modularity

When we divide things, we get expressions
like
94 =36-1+18

This can be written as:

54 =18 mod 36

That is, 54 leaves a remainder of 18 when
it's divided by 36.
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Modularity

In general, note that

a=b mod m<= m|a—1b
since m|a—1b
—kkm=a—b<=knm+b=a<=a=b modm

for some k€ Z.
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Okay, More Quiz!

mod 4
mod 10
mod 2
mod 3
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Congruences Are Pretty Powerful

Remember the sum of digits thing? It's
based off the following idea. A k digit
integer n in base 10 is essentially:

n=10"1n_1 + 10" 2nj_o + -+ + 10 ny + 100
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Properties of Congruences

Taking this mod 9,
n=10""ns_1+10" 2np_o+- - -+10'n; +10%n0 (mod 9)

We can take each term mod 9 separately.
It's a bit hard to think about what terms
like 10 'n;_; mod 9 are, though. We can do:

10-10---10-n;_; (mod 9)
| ——

k—1 times

We can also take each 10 in this expression
mod 9 separately. Then, the term is:

1-1---1-ngq (mod9)
k—1 times i&j\
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Properties of Congruences

The whole expression reduces to
n=ng1+ngo+---+n +n (mod?9)

This is just the sum of digits of n: which
is what we wanted!

It's pretty useful that we can manipulate
sums and products that way in congruences.
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Linear Congruences

This is where it gets fun. Since we have =,
which behaves like a weird =, we can write
a sort of linear equation:

162=8 (mod 24)
Or the general form,

ar="> (mod m)
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Linear Congruences

ar="> (mod m)

We won't go into how to solve these, but we
note that for d= ged(a, m),

1. If d{b, there are no solutions.

2. If d|b, there are exactly d solutions.?

A&7

2This is left loosely defined in this presentation. =




A Special Congruence

Consider the congruence:
ar=1 mod m

By our rules about gcd(a,m), for a solution
to exist, d|1.

What divides 17 Just 1, so d needs to be 1
for this equation to be solvable. Since d
is 1, there is exactly one solution.

A&7

N



Multiplicative Modular Inverse

ar=1 (mod m)

For the equation to be solvable,
ged (a,m) =1, that is, a and m must be
coprime.

This solution is unique and is called the
multiplicative modular inverse of a (mod m),
also written

z=a' (mod m)
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MODINV Examples

Consider:

51 (mod 7)
print(pow(5, -1, 7))
3
This is true, since 5-3=15=1 (mod 7).
print(pow(4, -1, 8))

ValueError: base is not invertible for the
given modulus

Be careful with your Python superpowers!

Make sure a and m are coprime. <@;;§;
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Big Theorem 1: Chinese Remainder Theorem
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Systems, of CONELNSHCESngs uhose

number is unknown. If we count them
by threes, we have two left over; by
fives, we have three left over; and
by sevens, two are left over. How
many things are there?

This forms the system:

CRT gives the solution z =23 or the general
solution = 105k+ 23, k€ Z. Note that
106=3-5-7.
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Weaker Form of the Chinese Remainder
Theorem

We consider a special case of the Chinese
Remainder Theorem: a system of two
equations

rz=a; (mod p)

z=az (mod g)
The Chinese Remainder Theorem states that
1 = 1o (mod pq) for any two solutions z; and

Zp. The CRT also requires that p and ¢ be
coprime.
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What We Need to Know

All we care about is the fact that if we
have some congruence mod pq where p and ¢
are coprime, we can separately solve the
congruences mod p and mod q.
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Big Theorem 2: Fermat's Little Theorem
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The Fun Begins

This is the heart of the talk, but it took a
while to get here..

Fermat's Little Theorem states that for
prime p and a coprime to p,

" 1=1 (mod p)

We prove this using the method of necklaces
(not to be confused with bracelets).
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Definitions

® For our purposes, an alphabet is a set
of symbols. An alphabet has a length, a,
that is the number of symbols it has.

® A string is a group of symbols. Using an
alphabet of at least one symbol, we can
build infinitely many strings.

® A necklace is a string whose last symbol

and first symbol are next to each other:
it's a circular linked list.

> Necklaces can be represented by more
than one string. Consider the necklace
'SIGPWNY' is represented by all the

strings 'SIGPWNY', 'YSIGPWN', 'NYSIGPW', <@>j
and so on. dst;p



Making an Alphabet and Some Strings

Let's use the alphabet with symbols AB,
a=2, p=>5. Let the length of the strings
we make using this alphabet be a prime p.
Then, we can make a” total strings. Written
out, our strings are:

AAAAA, AAAAB, AAABA, AAABB, AABAA, AABAB, AABBA,
AABBB, ABAAA, ABAAB, ABABA, ABABB, ABBAA, ABBAB,
ABBBA, ABBBB, BAAAA, BAAAB, BAABA, BAABB, BABAA,
BABAB, BABBA, BABBB, BBAAA, BBAAB, BBABA, BBABB,
BBBAA, BBBAB, BBBBA, BBBBB.
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The Question

The question is, for such a set of strings
defined by a and p, how many necklaces that
use more than one symbol are in the set?

Given that p is prime and gcd (a,p) =1.
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Strings to Necklaces

We need to figure out some sort of intuitive
relation between strings and necklaces.

A good place to start is how many ways a

necklace can be represented as a string.

Consider the necklace 'ABBABBABBABB'. The
strings we can do are:

¢ 'ABBABBABBABB': naturally.

e 'BABBABBABBAB': ROT1

e 'BBABBABBABBA': ROT2

¢ 'ABBABBABBABB': back to square one!

Clearly, there are only three
representations of the necklace as a string.
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A Useful Observation

The reason that there were only three
strings to represent 'ABBABBABBABB' is
because 3 divides its length, 12. There is
a substring of length 3 in 'ABBABBABBABB',
which wraps and therefore covers all
possible necklaces.

In general, if S is the length of the
necklace, and if 7| S, there will be T
possible strings that can represent the
necklace.

Another way of looking at this is that the
period of the string is T.

Really think about this and ask questions. Q&g;ﬁ;

This is a key part in the proof. C



OQur Case

In our case, we know S is a prime p. The
only 7T that divides p are 1 and p itself.

That is, there are only two cases: for a
prime length, some necklaces are represented
uniquely by just one string, and others are
represented by p strings.

R
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Case T=1

This is quite obvious, if the period is 1,
then this is a one-symbol string like
"AAAAA" or 'BBBBB'.

There are exactly a such cases (one case for
each symbol).

A&7
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Case T'=1p

These are the remaining a” — a cases. In all
these cases, each string represents exactly
one necklace and each necklace is

represented by exactly p strings (since
T=p).
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Answer

So, the answer to the question "~ "how many
necklaces of at least two symbols'' is

al —a
p

o



Done!

Since there must be an integral number of
necklaces, p| a’ — a.

By the definition of congruence,
p|a? —a = af =a (mod p).

Since a is coprime to p, we can write this
as ¢ ' =1 (mod p) and we are done!
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A Manual Verification

Remember our alphabet? Here it is split
into the sets T=p=0>5 and T=1:

AAAAB AAABA AABAA ABAAA BAAAA
AAABB AABBA ABBAA BBAAA BAAAB
AABAB ABABA BABAA ABAAB BAABA
AABBB ABBBA BBBAA BBAAB BAABB
ABABB BABBA ABBAB BBABA BABAB
ABBBB BBBBA BBBAB BBABB BABBB

AAAAA
BBBBEB

B



Outline

RSA



Public Key Cryptography? Help!

Pretty clear:




Mathematical Description: Encrpytion
and Decryption

® Alice gets Bob's 'public key', the
values (n,e). She also has the message
she wants to send Bob, m. She computes

c=m’ (mod n)

and sends it to Bob.
® Bob has his private key, d. He computes

m=c¢? (mod n)

to recover the message.

It's that simple!
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Mathematical Description: Key
Generation

Okay, but where do n,e,d come from? Let's
take a look.

® Get two primes p and gq.
> Multiply them to get mn = pq.
> Compute ¢(n) = (p—1)(¢—1).
® Choose any ¢ coprime to ¢(n).

> Compute d= e ! (mod ¢(n))
Public key is (n,e). Private key is d. ?
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Proof

We want to show that m = c? = (m®)? (mod pq).

By the way we calculated d, ed=1
(mod ¢(pg)).

Or, ed—1=ua(p—1)=10blg—1) for some
non-negative a and b, since

d(pg) = (p—1)(g—1).
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CRT Part

Using our takeaway from the CRT, we know
that to prove m = m®® (mod pg) it is
sufficient to show m = m° (mod p) and

m=m® (mod p) separately. Since the method
is identical, we do only p here.

1. If m=0 (mod p), m*®=0=m (mod p).
2. Otherwise,

m®? = m ;= m* PN . ;m (mod p)

Can you figure out where to go from here? @



FLT Part

=1"m=m (mod p)

by Fermat's Little Theorem. Do the same
thing for ¢ using b(¢— 1), and we have that

m= c? (me)d (mod pgq)

A&7
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