
Reverse Engineering I
FA2023 Week 04 • 2023-09-21

Richard and Juniper



Announcements

2023-09-23 • This Saturday!
- Fall CTF 2023
- First 350 registered people to show up 

(sigpwny.com/register23) get an electronic badge!
Also, free shirt + pizza!



Scoreboard



sigpwny{r3v3r5e_eng1n3er1ng}
ctf.sigpwny.com



Which is easier to understand?



Overview

- Basics
- Motivation
- Types of analysis
- Abstraction levels

- Techniques
- Known algorithms
- Tools

- Examples



What is reverse engineering?

Basics



Motivation

- Reverse engineering: reason about original meaning of code
- Goal is to understand the code

- The code is never "wrong" — it is the ultimate "documentation"
- Not all code is easy to read or well-documented
- Sometimes code is intentionally hard to understand



Static vs Dynamic Analysis
Most helpful if...

- Code is simple
- Code is hard to run

- Static Analysis
- Reading code
- Using tools to understand code

- Dynamic Analysis
- Running code
- Inspecting program state as it is 

running

Most helpful if...

- Code is complex

Static and and dynamic analysis are not a 
dichotomy! Use them together!



Abstraction Levels

- High level
- Python, JavaScript, etc.
- Easy to analyze

- Low level
- C, assembly, etc.
- Hard to analyze
- Everything is ran as machine code at some point

Assembly

C

Python, JavaScript

Machine code

C++

M
or

e 
ab

st
ra

ct



Example: Dynamic analysis

What is the next output?

What does the code look like?



The Code



Making Assumptions

- Occam's razor: the simplest solution is often the right one
- But always remember that assumptions can be wrong

What if the previous code looked like this?



How to reverse engineer?

Techniques



Static Analysis

- Function rewriting
- Simplify complex portions of code

- Find known algorithms/patterns
- Decompilers

- Automatically extract abstractions from low level programs
- Turn assembly into more readable C
- Will be covered in depth in Reverse Engineering II meeting



Example: Common patterns

Can you simplify this code?



Example: Common patterns

Simplify even more?



Example: Common patterns

Even simpler?



Example: Common patterns



Example: Common patterns

Which level of simplification is the most useful?



- Partial evaluation
- Evaluate small portions of the code to reduce complexity

- Modifying programs
- Add or remove code
- Add print statements
- "Patching" binaries

Dynamic Analysis



Advanced Dynamic Analysis

- Debuggers
- gdb, pdb
- Will be covered in depth in Reverse Engineering II meeting

- Side channels
- Instruction counting, time counting
- Will be covered in depth in Reverse Engineering II meeting



Examples



Rewriting: this is a 
backwards for 
loop

Goal: input flag to pass checks 
(doesn't print "wrong")

User input

Don't want this to run



Two ways to 
solve: partial 
evaluation or 
patching



One way: patching 
(adding print)

$ python3 test.py
What is the flag? aaaa
flag
That's definitely wrong.



Second way: 
evaluate the 
portion in Python 
REPL



Go try challenges!

- Go to ctf.sigpwny.com
- Start with Python RE 1: Easy rev

- If you don't have Python installed, see slides from last 
meeting (Reverse Engineering Setup)



Next Meetings

2023-09-23 • This Saturday!
- Fall CTF 2023
- First 350 registered people to show up 

(sigpwny.com/register23) get an electronic badge!
Also, free shirt + pizza!

No meeting this Sunday
2023-09-28 • Next Thursday: OSINT
- Professional stalking Gathering info about 

people/organizations from freely available sources



sigpwny{r3v3r5e_eng1n3er1ng}
ctf.sigpwny.com

Meeting content can be found at 
sigpwny.com/meetings.


