é’g SIGPwny

FA2023 Week 04 o 2023-09-21

Reverse Engineering |

Richard and Juniper

Announcements

2023-09-23 « This Saturday!

- Fall CTF 2023

- First 350 registered people to show up
(sigpwny.com/register23) get an electronic badge!
Also, free shirt + pizzal

0

Scoreboard

Place User Score
1 ronanboyarski 23485
2 NullPoExc 21615
3 caasher 13860
4 EhWhoAml 8195
5 CBCicada 7260
6 mgcsstywth 6475
7 SHADOWV1RUS 5970
8 aaronthewinner 5555
9 drizzle 4825

10 Ex-32 4230

ctf.sigpwny.com

sigpwny{r3v3r5e_engln3erlng}

oA

Which is easier to understand?

200
o000 def aaoaaaa04922(aa27619):
: : aaoaaaona20551 = -1
def flbonaca(.n)- aa27619 = aa27619 + 1
if n <= 0: aa27618 = -aa27619
~ return [] if aa27618 > 0:
elltfenN=="1": return []
' return [0] elif not bool(aa27619 - 2):
IR 11 == 2k return [] * aa27618
return [0, 1] elif aa27619 == 1:
else:‘ return [aa27619-1]
fib_sequence = [0, 1] else:
while len(fib_sequence) < n: aa0aaa0a32021 = [0, 1]
next_num = fib_sequence[-1] + fib_sequence[-2] while True:
fib_sequence.append(next_num) if not (len(aacaaaona32021) < aa27619):
return fib_sequence break

220aaa0a21049 = aaocaaaoa32021[-aaocaaaoa32021[1]]
aanaaana2l049 += aaoaaaoa32021[aaocaaana20551**2 - 3]
aaonaaana32021.append(aaoaaaca21049)
else:
aaoaaa3322 = 23
return [aaocaaa3322 + i for 1 in aaoaaaona32021]
return aaocaaaoa32021

Overview

- Basics
- Motivation
- Types of analysis
- Abstraction levels
- Technigues
- Known algorithms
- Tools

- Examples

0

Basics

\What is reverse engineering?

0

Motivation

- Reverse engineering: reason about original meaning of code

- Goal is to understand the code
- The code is never "wrong" — it is the ultimate "documentation”

- Not all code is easy to read or well-documented
- Sometimes code is intentionally hard to understand

0

Static vs Dynamic Analysis

- Static Analysis Most helpful if...
- Reading code - Code is simple
- Using tools to understand code - Code is hard to run

- Dynamic Analysis

-~ Running code Most helpful if...

- Inspecting program state as it is - Code is complex

running

Static and and dynamic analysis are not a
dichotomy! Use them together!

0

Abstraction Levels

High level
- Python, JavaScript, etc.
- Easy to analyze

Low level

- C, assembly, etc.

- Hard to analyze

- Everything is ran as machine code at some point

More abstract

Python, JavaScript

C++

Assembly

Machine code

R

N~

Example: Dynamic analysis

Give me
4

Give me
11

Give me
2

Give me
-1

Give me

number :

number:

number:

number:

number:

What is the next output?

What does the code look like?

0

The Code

N

1=0

while True:
val = int(input('Give me a number:
1+=1

print(val + 1)

"))

oA

Making Assumptions

- Occam's razor: the simplest solution is often the right one
- But always remember that assumptions can be wrong

1=0
while True:
val = int(input('Give me a number: "))

I |
if 1 > 20:
val = -val

print(val + 1)

What if the previous code looked like this?

0

Techniques

How to reverse engineer?

0

Static Analysis

- Function rewriting
- Simplify complex portions of code
- Find known algorithms/patterns
- Decompillers
- Automatically extract abstractions from low level programs

- Turn assembly into more readable C
- Will be covered in depth in Reverse Engineering Il meeting

0

Example: Common patterns

arr = [0] * 10

1 =19

while 1 >= 0:
arr[i] = 1 * 2
L =1

Can you simplify this code?

0

Example: Common patterns

arr = [0] * 10
for 1 in range(9, 0 - 1, -1):
arr|i] = 1 * 2

Simplify even more?

0

Example: Common patterns

arr = [0] * 10
for 1 in range(0, 10):
arr[i] = 1 * 2

Even simpler?

oA

Example: Common patterns

arr = [1*2 for 1 in range(0, 10)]

oA

Example: Common patterns

Which level of simplification is the most useful?

arr = [0] * 10

1 =9

while 1 >= 0:
arrli]l = it % 2
=1

arr = [0] * 10
for 1 in range(9, 0 - 1, -1):
arr[i] = 1 * 2

arr = [0] * 10

for i1 in range(0, 10): arr = [1*2 for 1 in range(0, 10)] @g
arr[i] = 1 * 2 d&
N~

Dynamic Analysis

- Partial evaluation
- Evaluate small portions of the code to reduce complexity

- Modifying programs
- Add or remove code
- Add print statements
- "Patching"” binaries

0

Advanced Dynamic Analysis

- Debuggers

- gdb, pdb

- Will be covered in depth in Reverse Engineering Il meeting
- Side channels

- Instruction counting, time counting

- Will be covered in depth in Reverse Engineering Il meeting

0

Examples

oA

Goal: input flag to pass checks
(doesn't print "wrong")
f = input('What is the flag? ') <g—

User input
va = [1751, 1649, 1836, 1734]
arr = ''.join([chr(va[len(va)-1-1]//17) for i1 in range(len(va))])
it o] Y= Pl
print(“That's definitely wrong.")
else:
it = len(arr)
whileit>®:<____ . .
it =1 T T T e - ___ Rewriting: this is a
if arr[it] != f[it]: ~ T T = == =backwards for
print('Wrong flag!')
exit(1) Ioop

Don't want this to run @
N

f = input('What is the flag? ')

va = [1751, 1649, 1836, 1734]

arr = ''.join([chr(val[len(va)-1-1]//17) for i1 in range(len(va))])
N~
if f[O] != 'f': e
print("That's definitely wrong.") S -
else: =D - T i
for 1t in range(len(arr)-1, -1, -1): ‘\\ WO ways _O
if arr[it] '= f[it]: ~ < _ solve: partial
print('Wrong flag!") evaluation or
XL patching

R

N~

00
f = input('What is the flag? ')

va = [1751, 1649, 1836, 1734]

arr = ".join([Chr(va[len(va)—L—i]//lf) for 1 in range(len(va))])
print(arr) —
if f[O] !'= 'f': on _ :
e way: patchin
print("That's definitely wrong.") - y-P g

(adding print)

else:
for 1t in range(len(arr)-1, -1, -1):

Uf arciit] '= flitl:
print('Wrong flag!')
exit(1)

$ python3 test.py

What 1is the flag? aaaa
flag

That's definitely wrong.

$ python3
Python 3.11.5 (main, Aug 24 2023, 15:09:45) [Clang 14.0.3 (clang-

1403.0.22.14.1)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>=> yva = [1751, 1649, 1836, 1734]
>>> arr = ''.join([chr(va[len(va)-1-1]//17) for i in range(len(va))l])
>>> arr
‘flag’

Second way:

evaluate the
portion in Python
REPL

0

Go try challenges!

- Go to ctf.sigpwny.com
- Start with Python RE 1: Easy rev

- If you don't have Python installed, see slides from last
meeting (Reverse Engineering Setup)

0

Next Meetings

2023-09-23 « This Saturday!

- Fall CTF 2023

- First 350 registered people to show up
(sigpwny.com/register23) get an electronic badge!
Also, free shirt + pizzal

No meeting this Sunday
2023-09-28 « Next Thursday: OSINT

- Pretessienat-statkinrg Gathering info about

people/organizations from freely available sources

R

ctf.sigpwny.com

sigpwny{r3v3r5e_engln3erlng}

Meeting content can be found at
sigpwny.com/meetings.

LS SIGPwny

N\

