
Symbolic Execution
SP2024 Week 12 • 2024-04-11

Nikhil Date and Pete Stenger

Announcements

- b01lersCTF 2024 - Tomorrow!
- Friday 5 PM CST - Sunday 5PM CST
- Details TBD, we will be playing in some fashion

- Last chance for shirts: sigpwny.com/shirt2024

sigpwny{stat3_explos1on}
ctf.sigpwny.com

SAT/SMT Solvers

- SAT stands for satisfiability. SAT solvers solve propositional
formulas like (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ ¬r)
- Boolean SAT is NP-complete, but in practice many problems are

tractable
- SMT stands for satisfiability modulo theories. SMT solvers

allow non-logical operations, depending on the "theory"
- but still solve a satisfiability problem

SMT Theories

– Integers
– Bitvectors
– Arrays
– IEEE Floats
– Reals
– Uninterpreted Functions (Blackbox Pure Functions)

Constraint solving

- Solve complex systems of equations
- z3 is an SMT solver

- python library for solving constraints
- pip install z3-solver

API of Z3 Py

– "Sorts": data types (Int, BitVec, Real, Array)
– Operators (are theory-specific)

– Logical operators (Or, And, Not, Implies)
– Arithmetic operators (+, -, *, /)
– Inequalities and equality (==, >, <, >=, <=)
– Bitvector operators (bitwise operations, bit shifting)

– Constraints
– "Model": assignment of values to "variables" that satisfies all

constraints
– Good resource:

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Z3 Basics

(Note: this finds any of the possible solutions)

x + y = 12
x < y{

pip install z3-solver

Z3 is Powerful
Q = [Int('Q_%i' % (i + 1)) for i in range(8)]

XXX = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

YYY = [Distinct(Q)]

ZZZ = [If(i == j,

 True,

 And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))

 for i in range(8) for j in range(i)]

solve(XXX + YYY + ZZZ)

pip install z3-solver

What does this line do?

Z3 is Powerful
Q = [Int('Q_%i' % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

YYY = [Distinct(Q)]

ZZZ = [If(i == j,

 True,

 And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))

 for i in range(8) for j in range(i)]

solve(val_c + YYY + ZZZ)

pip install z3-solver

What does this line do?

Z3 is Powerful
Q = [Int('Q_%i' % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

At most one queen per column

col_c = [Distinct(Q)]

ZZZ = [If(i == j,

 True,

 And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))

 for i in range(8) for j in range(i)]

solve(val_c + col_c + ZZZ)

pip install z3-solver

What does this line do?

Z3 is Powerful
Q = [Int('Q_%i' % (i + 1)) for i in range(8)]

Each queen is in a column {1, ... 8 }

val_c = [And(1 <= Q[i], Q[i] <= 8) for i in range(8)]

At most one queen per column

col_c = [Distinct(Q)]

Diagonal constraint

diag_c = [If(i == j,

 True,

 And(Q[i] - Q[j] != i - j, Q[i] - Q[j] != j - i))

 for i in range(8) for j in range(i)]

solve(val_c + col_c + diag_c)

pip install z3-solver

!= 1

!= 2

!= 3

Z3 Challenge
System of diophantine equations
- (only integer solutions)
- Hard to solve normally

(y - 123456)^2 = (x - 234567)^3 - 2

submit: sigpwny{x + 2y}

from z3 import *

x = Int('x')

// ??

s = Solver()

// change line below

s.add(???)

if s.check():

 print(s.model())

pip install z3-solver

Your turn! ~2 minutes to try this out

Symbolic Execution

- Solve for inputs
- Generate constraints from program automatically

x = ?
y = x * 3
z = y - x

- Solve for x such that z == 4

Input Constraint

Symbolic Execution Usages

- Reversing without reversing
- Solve for input on stdin (flag) such that the flag checker prints “That

flag is correct!”

- Automated PWN
- Solve for input such that the instruction pointer is overwritten

- Research: binary instrumentation and analysis

Angr

- Symbolic execution on binaries
- Angr can be used for automating CTF chals
- Install with pip install angr
- Template (e.g. for angry challenge):

- https://gist.github.com/richyliu/33489063d02c0a2afe0d6de6ec8d3e07

https://gist.github.com/richyliu/33489063d02c0a2afe0d6de6ec8d3e07

Angr CTF Challenge

- https://github.com/angr/angr-examples/tree/master/examples
/b01lersctf2020_little_engine

- Standard (basic) rev challenge
- gets input from the user
- does some validation
- tells you if it's correct

https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine
https://github.com/angr/angr-examples/tree/master/examples/b01lersctf2020_little_engine

Angr Tips

- Running out of memory?
- Set environment variable REUSE_Z3_SOLVER=1

- Avoids cloning z3 solver when state splits

- Add veritesting=True argument to simulation_manager
- Automatically identifies merge points

- Set LAZY_SOLVES flag
- Defer evaluation as far as possible

Angr Internals

- Uses z3 for constraint solving and symbolic manipulation
- Steps through program

- splits states when it encounters a branch

- “State”: represents program state (memory, registers, etc.)
- States have "path conditions"

- Stashes: collections of states (active, found, deadended,
errored)

- Simulation Managers: control how search proceeds

A Problem

– State explosion
– Repeated branching can cause the number of states to become

unmanageable

#include <stdio.h>
int main() {
 char buf[27];
 fgets(buf, 27, stdin);
 char target[] = "abcdefghijklmnopqrstuvwxyz";
 int count = 0;
 for (int i = 0; i < 26; i++) {
 if (buf[i] == target[i]) {
 count++;
 }
 }
 if (count == 26) {
 printf("correct\n");
 } else {
 printf("wrong\n");
 }
}

State Explosion Example

How many branches
would this create?

#include <stdio.h>
int main() {
 char buf[27];
 fgets(buf, 27, stdin);
 char target[] = "abcdefghijklmnopqrstuvwxyz";
 int count = 0;
 for (int i = 0; i < 26; i++) {
 if (buf[i] == target[i]) {
 count++;
 }
 }
 if (count == 26) {
 printf("correct\n");
 } else {
 printf("wrong\n");
 }
}

State Explosion Example

2^(26+1) = a lot

Going Further

- Angr's behavior can be modified/instrumented/customized
- Research

- Fuzzware
- uses angr for more effective fuzzing
- reduces "input overhead"

- Libmatch
- uses angr as a static analysis tool

Next Meetings

2024-04-14 • Tomorrow (Friday)
- b01lersCTF 2024 starts at 5 PM
- More info in Discord soon
2024-04-18 • This Sunday
- Location-based OSINT with Henry
- Become rainbolt
YYYY-MM-DD • Next Thursday
- Social Engineering with Emma and Sagnik
- Learn how to manipulate people

sigpwny{stat3_explos1on}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

