
Java Reverse Engineering
Easy enough... or is it?



How does Java work?

● .JAR files
○ This is the Java “executable”
○ Just fancy zip file renamed as .jar
○ Contains compiled class files and metadata

● .class files
○ Represents a .java file
○ Contains JVM bytecode

● metadata:
○ In file META-INF/MANIFEST.MF
○ Tells the JVM which class has the main method



How do we reverse engineer Java?

● Decompilers
○ Turn bytecode back into Java (VERY accurately)
○ Examples: Procyon, FernFlower, JD-GUI, etc
○ Break when program is obfuscated

■ Obfuscators rename variables, add code that is never run, 
encrypt strings, etc.

■ Popular obfuscators are ZKM, Allatori, Proguard

● Deobfuscator
○ Attempt to reverse obfuscator’s destruction
○ May make it possible to use a decompiler after
○ Cannot recover all information: variable/method names lost
○ Examples: https://github.com/java-deobfuscator/deobfuscator, 

(https://mega.nz/file/H0wCXIrK#7Ud5O9-4RmZi5riLizvLByv-ET67PU4KfVlMXo-jG4o) 
https://github.com/java-deobfuscator/deobfuscator-gui

https://github.com/java-deobfuscator/deobfuscator
https://mega.nz/file/H0wCXIrK#7Ud5O9-4RmZi5riLizvLByv-ET67PU4KfVlMXo-jG4o
https://github.com/java-deobfuscator/deobfuscator-gui


Recommendations

● By default, use Bytecodeviewer
○ Easy to use
○ Includes several decompilers and bytecode viewers
○ Can decompile .apk
○ https://bytecodeviewer.com

● If obfuscated, use deobfuscator-gui
○ Can deobfuscate programs obfuscated by commercial obfuscators 

(most of them)
○ https://github.com/java-deobfuscator/deobfuscator-gui
○ If this doesn’t work, or if the jar is custom obfuscated:

■ Use ObjectWeb ASM library to manipulate the bytecode 
yourself. (This sucks to do)

https://bytecodeviewer.com/
https://github.com/java-deobfuscator/deobfuscator-gui


EXAMPLE TIME!


