
Web Backend Hacking
Path traversal & server-side request forgery

ankur & ian

Path traversal

● Developers write a website with functionality to access files by path
● They forget to limit what paths you can access
● Outcome? We can read arbitrary files off of the filesystem

The idea:

The problem:

Challenge 1:

ssrf-1.chal.sigpwny.com

Can you get the flag? (in a file, flag.txt)

2 minutes

http://ssrf-1.chal.sigpwny.com

public web server

public internet
allowed!

SSRF: server side request forgery

internal network

public web server

public internet
allowed!

SSRF: server side request forgery

internal network

public web server

ca
t p

ic
ge

tte
r

Some functionality
that sends
requests public internet

allowed!

SSRF: server side request forgery

internal network

public web server
local service

(only accepts connections from internal network)

has exec()
(or something else we can abuse)

danger!!

ca
t p

ic
ge

tte
r

Some functionality
that sends
requests public internet

allowed!

SSRF: server side request forgery

SSRF: the mistake
● Something that can make a request

○ open a socket and put bytes into it

● That functionality doesn’t validate the address
● This allows access to private resources

how would a developer ever do this????? you might ask

Enter PHP: file_get_contents()

● This One Cool Trick Will Let You SSRF!
○ file_get_contents() lets you get:

■ Files
■ URLs
■ FTP
■ and more

https://www.php.net/manual/en/wrappers.php

Functionality that causes SSRF
● Fetch image based on a URL

○ pass an internal URL -> SSRF

● Any sort of XML processing
○ XXE (XML External Entities)

● SVGs
○ can include links!

● Fetching an RSS feed

Challenge 2:

ssrf-2.chal.sigpwny.com

Can you get the flag? (located at /flag.php)

5 minutes

http://ssrf-2.chal.sigpwny.com

A (naive) fix?
if ‘127.0.0.1’ or ‘localhost’ in request.url:

reject_request()

but how could you bypass this check, hmm….?

what other ways are there to represent numbers in an IP address?

A proper fix
● Make an allowlist of URLs that are OK

○ Could denylist internal IPs, but there are problems...

● Preventing SSRF when you’re accepting arbitrary URLs:
○ complicated!
○ better to ask yourself if you need that functionality
○ if you really need it, OWASP Preventing SSRF

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

Got SSRF….. now what?
● Scan internal network

○ Find other services to abuse!

● get(“AWS_METADATA_ENDPOINT/secret_access_keys”)
○ haha now I can control your servers
○ How the Capital One breach happened

● Abuse other protocols that the URL handler supports
○ file:// - arbitrary file read
○ ldap:// - gather user information
○ (s)ftp:// - file read from other machines on the network
○ gopher:// - send arbitrary TCP packets

● If you’re lucky, you can chain an SSRF into RCE

Got SSRF….. now what? (cont.)
● Elasticsearch

○ Widely used tool to index & search for documents
○ Exposes an internal HTTP API

● Redis
○ Caching technology
○ Takes RESP (REdis Serialization Protocol) over TCP
○ RESP commands are separated with \r\n… 🤔

● RCE on internal Gitlab via git:// protocol
○ https://liveoverflow.com/gitlab-11-4-7-remote-code-execution-real-world-ctf-2018/

● PHP phar://
○ Unserialize anything… (can lead to a deserialization chain)

● … and lots more!

https://liveoverflow.com/gitlab-11-4-7-remote-code-execution-real-world-ctf-2018/

in conclusion

● ssrf - get a webserver to make requests on your behalf
○ gives you access to internal resources (stuff only accessible from localhost)

now go do ssrf-3.chal.sigpwny.com! (and 4, and 5)

http://ssrf-3.chal.sigpwny.com

more modern web attacks if you’re curious:
● read more:

○ https://portswigger.net/web-security/ssrf
○ https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery

● Some other classes of modern web bugs:
○ request smuggling - proxy & backend interpret request differently

■ serve a malicious response to an unsuspecting user

○ xs-search - infoleak through search functionality
○ none jwt, wrong jwt (RS256 vs HS256), forgeable jwt (key leaking)
○ oauth downgrade (pkce but strip the param so the server accepts)

● https://portswigger.net/daily-swig
○ Good blog, web security++

https://portswigger.net/web-security/ssrf
https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery
https://portswigger.net/daily-swig

