

FA2023 Week 07 • 2023-10-15

Anakin and Sagnik

Announcements

Lockpicking Support Group!
 Come practice lockpicking
 Mondays 8-9 PM

ctf.sigpwny.com sigpwny{R1v35t_5ham1r_4d13man}

Section 1

Chinese Remainder Theorem

Small versus Large n

- Remember modular arithmetic from last time?
 - Arithmetic mod n means work with remainders after division by n
- Since we are looking at values mod n for some n, we lose information

Small versus Large n

- Suppose I ask you to find $4*4 \mod 3$
 - You would know that the result is 1
- Now suppose I tell you $x\equiv 1 \mod 3$ and I told you to find x/4
 - This is much harder

Small versus Large n

- Now look at $4 * 4 \mod 20$
 - Again you would know that the result is 16
- Now suppose I tell you $x \equiv 16 \mod 20$ and I told you to find x/4
 - This is much easier!
- Can we use this to our advantage?

The Chinese Remainder Theorem

- This first appeared in ancient Chinese texts¹ dating back to the 3rd century
- Let's try to find x such that 0 \leq x \leq 105. Furthermore we are given the following information

 $\begin{array}{ll} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{array}$

– The Chinese Remainder Theorem tells us that $x\equiv 23\pmod{3*5*7=105}$

¹Sunzi Suanjing

The Chinese Remainder Theorem

This can be stated more generally. Suppose we have the following information:

 $\begin{aligned} \mathbf{x} &\equiv \mathbf{n}_1 \pmod{\mathbf{p}_1} \\ \mathbf{x} &\equiv \mathbf{n}_2 \pmod{\mathbf{p}_2} \\ &\vdots \\ \mathbf{x} &\equiv \mathbf{n}_k \pmod{\mathbf{p}_k} \end{aligned}$

Such that p_i and p_j share no common factors whenever $i\neq j$. Then we have a unique solution for $x \pmod{p_1p_2\cdots p_k}$

Proof of the Chinese Remainder Theorem

Why Do We Care?

- This means that any cryptographic system using modular arithmetic (read: any modern cryptographic system) has to be careful with its primes
- Consider **smooth primes**: Primes p such that p-1 has many small factors.
- Then we can use Pohlig-Hellman to attack this prime
- The Chinese Remainder Theorem and Pohlig-Hellman was used in a report in 2015 called Logjam to attack TLS/SSL.
- SageMath has built-in Chinese Remainder Theorem functions

Generators

- A core object in studying the Discrete Log Problem is the generator
- A generator mod p is a number g such that the list $g^0,g^1,g^2,\ldots,g^{p-1}$ mod p gives every possible non-zero remainder $1,2,\ldots,p-1$
- p-1 is the smallest value such that $g^{p-1}\equiv 1 \pmod{p}$
- Thus, every number mod p can be written as a power of g, making arithmetic easier

CRT in Discrete Log

Goal: Find a such that $g^a \equiv A \pmod{p}$ where $p - 1 = p_1^{n_1} p_2^{n_2} \cdots$

– Let $r_i=rac{p-1}{p_i^{r_i}}$, $g_i=g^{r_i}$, and $A_i=A^{r_i}$

– Now we solve discrete log here: $g_i^{a_i} \equiv {\sf A}_i \pmod{{\sf p}}$

- This is easier since every number is a power of ${\ensuremath{\mathsf{g}}}^{r_i}$ rather than ${\ensuremath{\mathsf{g}}}$
- Since r_i divides p-1, there are fewer values of a_i such that $g_i^{a_i}\equiv 1 \pmod{p},$ so we cycle around sooner
- Thus there are less a_i to try \implies easier to find

- $x \equiv x_i \pmod{p_i^{n_i}}$ and so CRT tells us x

Section 2

Elliptic Curve Diffie-Hellman

Old and Boring: DH

Public parameters: generator g and prime p

 $\stackrel{\$}{\leftarrow}$ = "uniform random sample from"

New and Cool: ECDH

- Who says we have to use plain numbers or even just modular arithmetic
- Much of modern security uses elliptic curves
- These are curves of the form $y^2 = x^3 + ax + b$
 - The name comes from when mathematicians were trying to figure out general formulas for arc length of ellipses.
 Equations of this form came up **alot**

Real Numbers are Bad

Discrete Log

- Normal Discrete Log Problem:

- Given g,A, and prime p, find a such that $g^a \equiv A \pmod{p}$
- Elliptic Curve Discrete Log Problem:
 - Given point G,A, and prime p, find a such that $A=a\ast G$ over points mod p

Why is this hard??

Yes, this is Miniclip 8 Ball Pool

Why is this hard??

One More Time

Public parameters: generator g and prime p

 $\stackrel{\$}{\leftarrow}$ = "uniform random sample from"

Elliptic Curve Diffie-Hellman

Public parameters: curve $y^2 = x^3 + a'x + b'$, generator point G and prime p. We do all the following math mod p. We denote the number of points on the curve as #(E).

 $\stackrel{\$}{\leftarrow}$ = "uniform random sample from"

Section 3

RSA

Asymmetric Encryption

- XOR and Diffie-Hellman were symmetric encryption
- What about asymmetric encryption?
- Rather than a shared secret key, we can have a public key that anyone can use to encrypt a message to send us, but only we can decrypt the message
- RSA is one such asymmetric cryptosystem.

Totients and Euler's Theorem

- We call $\phi(\mathbf{n})$ Euler's "totient" function
- $\phi(\mathbf{n}) =$ the number of numbers $\geq \mathbf{0}$ that share no factors with \mathbf{n}
- Euler's Theorem: If a and n share no factors, then $a^{\phi(n)} \equiv 1 \pmod{n}$
 - This theorem is the basis for the RSA cryptosystem

Proof of Euler's Theorem

The Hard Problem In RSA

- Multiplication is easy
- Factoring is hard
- let p and q be large primes.
- If n = p * q, then $\phi(n) = (p 1) * (q 1)$
- Given n, since p and q are large, factoring is hard!
 - Thus, finding $\phi(\mathbf{n})$ is hard

The RSA Cryptosystem

- Let e be a public exponent, usually $e = 2^{16} + 1 = 65537$
- Alice generates large (> 256 or even > 512 bits) secret primes p, q
- Alice then calculates n = p * q and releases it as a public key. Then they calculate $\phi(n) = (p 1) * (q 1)$ as a private key.
- Knowing $\phi(n)$, compute d such that $ed \equiv 1 \pmod{\phi(n)}$
 - If you know $\phi(\mathbf{n}),$ this is fast using the Extended Euclidian Algorithm
- Bob computes $\mathsf{c}=\mathsf{m}^{\mathsf{e}}$ and sends it to Alice
- Then Alice can compute $c^d \equiv m \pmod{n}$

Correctness

- Remember, modular arithetic is arithmetic using remainders
- So if $a\equiv b \pmod{n}$ then we should have that a=b+kn for some k.

- ed
$$\equiv 1 \pmod{\phi(n)}$$
. So ed $= 1 + k \cdot \phi(n)$ for some k
 $c^d \equiv (m^e)^d \equiv m^{ed} \equiv m^{1+k \cdot \phi(n)} \equiv m * (m^{\phi(n)})^k \equiv m * 1^k \equiv m \pmod{n}$

Attacks

- Small primes: can be easy to brute force
- Smooth primes: Chinese Remainder Theorem strikes again!
- Large public n or small $\phi(n)$: Weiner's Attack
- Oracles: Get your pen and paper, do the algebra!
- Ducks (Protip: Don't use pastebin.com as secret storage)
- etc... (Google is your best friend)

Next Meetings

2023-10-19 - This Thursday

- PWN I with Sam
- 2022-10-22 Next Sunday
 - PWN II with Kevin

ctf.sigpwny.com sigpwny{R1v35t_5ham1r_4d13man}

Thanks for listening!

