SIGPwny

FA2023 Week 07 • 2023-10-15
Crypto II

Anakin and Sagnik

Announcements

- Lockpicking Support Group!
- Come practice lockpicking
- Mondays 8-9 PM

ctf.sigpwny.com sigpwny\{R1v35t_5ham1r_4d13man\}

Section 1

Chinese Remainder Theorem

Small versus Large n

- Remember modular arithmetic from last time?
- Arithmetic mod n means work with remainders after division by n
- Since we are looking at values mod n for some n, we lose information

Small versus Large n

- Suppose I ask you to find $4 * 4 \bmod 3$
- You would know that the result is 1
- Now suppose I tell you $x \equiv 1 \bmod 3$ and I told you to find $\mathrm{x} / 4$
- This is much harder

Small versus Large n

- Now look at $4 * 4 \bmod 20$
- Again you would know that the result is 16
- Now suppose I tell you $x \equiv 16$ mod 20 and I told you to find $\mathrm{x} / 4$
- This is much easier!
- Can we use this to our advantage?

The Chinese Remainder Theorem

- This first appeared in ancient Chinese texts ${ }^{1}$ dating back to the 3rd century
- Let's try to find x such that $0 \leq x \leq 105$. Furthermore we are given the following information

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 3 & (\bmod 5) \\
x \equiv 2 & (\bmod 7)
\end{array}
$$

- The Chinese Remainder Theorem tells us that $x \equiv 23$ $(\bmod 3 * 5 * 7=105)$

[^0]

The Chinese Remainder Theorem

This can be stated more generally. Suppose we have the following information:

$$
\begin{aligned}
x \equiv n_{1} & \left(\bmod p_{1}\right) \\
x \equiv n_{2} & \left(\bmod p_{2}\right) \\
\vdots & \\
x \equiv n_{k} & \left(\bmod p_{k}\right)
\end{aligned}
$$

Such that p_{i} and p_{j} share no common factors whenever $i \neq j$ Then we have a unique solution for $x\left(\bmod p_{1} p_{2} \cdots p_{k}\right)$

Why Do We Care?

- This means that any cryptographic system using modular arithmetic (read: any modern cryptographic system) has to be careful with its primes
- Consider smooth primes: Primes p such that p-1 has many small factors.
- Then we can use Pohlig-Hellman to attack this prime
- The Chinese Remainder Theorem and Pohlig-Hellman was used in a report in 2015 called Logjam to attack TLS/SSL.
- SageMath has built-in Chinese Remainder Theorem functions

Generators

- A core object in studying the Discrete Log Problem is the generator
- A generator mod p is a number g such that the list $\mathrm{g}^{\ominus}, \mathrm{g}^{1}, \mathrm{~g}^{2}, \ldots, \mathrm{~g}^{\mathrm{p}-1} \bmod \mathrm{p}$ gives every possible non-zero remainder 1, 2, ..., p-1
- p-1 is the smallest value such that $g^{p-1} \equiv 1(\bmod p)$
- Thus, every number mod p can be written as a power of g, making arithmetic easier

CRT in Discrete Log

Goal: Find a such that $g^{\mathrm{a}} \equiv \mathrm{A}(\bmod \mathrm{p})$ where $\mathrm{p}-1=\mathrm{p}_{1}^{\mathrm{n}_{1}} \mathrm{p}_{2}^{\mathrm{n}_{2}} \cdots$

- Let $r_{i}=\frac{p-1}{p_{i}^{n_{i}}}, g_{i}=g^{r_{i}}$, and $A_{i}=A^{r_{i}}$
- Now we solve discrete log here: $g_{i}^{a_{i}} \equiv A_{i}(\bmod p)$
- This is easier since every number is a power of $\mathrm{g}^{r_{i}}$ rather than g
- Since r_{i} divides $p-1$, there are fewer values of a_{i} such that $g_{i}^{a_{i}} \equiv 1(\bmod p)$, so we cycle around sooner
- Thus there are less a_{i} to try \Longrightarrow easier to find
$-x \equiv x_{i}\left(\bmod p_{i}^{n_{i}}\right)$ and so CRT tells us x

Section 2

Elliptic Curve Diffie-Hellman

Old and Boring: DH

Public parameters: generator g and prime p

$$
\begin{aligned}
& \text { Alice } \\
& a \stackrel{s}{\leftarrow}\{2, \ldots, p-2\} \\
& \mathrm{A}=\mathrm{g}^{\mathrm{a}}(\bmod \mathrm{p}) \\
& S=B^{a}(\bmod p) \\
& \text { Bob } \\
& \mathrm{b} \stackrel{s}{s}_{\leftarrow}\{2, \ldots, \mathrm{p}-2\} \\
& \mathrm{B}=\mathrm{g}^{\mathrm{b}}(\bmod \mathrm{p}) \\
& S=A^{b}(\bmod p)
\end{aligned}
$$

New and Cool: ECDH

- Who says we have to use plain numbers or even just modular arithmetic
- Much of modern security uses elliptic curves
- These are curves of the form $y^{2}=x^{3}+a x+b$
- The name comes from when mathematicians were trying to figure out general formulas for arc length of ellipses. Equations of this form came up alot
$y^{2}=x^{3}+a x+b$

Addition $P+Q$
"Chord rule"

Doubling $P+P$ "Tangent rule"

Neutral element $\mathcal{O} \quad$ Inverse element $-P$

Real Numbers are Bad

$y^{2}=x^{3}-2 x+1$ over \mathbb{R}

$y^{2}=x^{3}-2 x+1(\bmod 89)$

Discrete Log

- Normal Discrete Log Problem:
- Given g, A, and prime p , find a such that $\mathrm{g}^{\mathrm{a}} \equiv \mathrm{A}(\bmod \mathrm{p})$
- Elliptic Curve Discrete Log Problem:
- Given point G, A, and prime p, find a such that $A=a * G$ over points mod p

Why is this hard??

Yes, this is Miniclip 8 Ball Pool

Why is this hard??

One More Time

Public parameters: generator g and prime p

$$
\begin{aligned}
& \text { Alice } \\
& \mathrm{a} \stackrel{\$}{\leftarrow}^{\leftarrow}\{2, \ldots, \mathrm{p}-2\} \\
& \mathrm{A}=\mathrm{g}^{\mathrm{a}}(\bmod \mathrm{p}) \\
& S=B^{a}(\bmod p) \\
& \text { Bob } \\
& \mathrm{b} \stackrel{\mathbf{s}}{\leftarrow}\{2, \ldots, \mathrm{p}-2\} \\
& \mathrm{B}=\mathrm{g}^{\mathrm{b}}(\bmod \mathrm{p}) \\
& S=A^{b}(\bmod p)
\end{aligned}
$$

$\stackrel{s}{s}^{s}=$ "uniform random sample from"

Elliptic Curve Diffie-Hellman

Public parameters: curve $y^{2}=x^{3}+a^{\prime} x+b^{\prime}$, generator point G and prime p . We do all the following math mod p . We denote the number of points on the curve as \#(E).

$$
\begin{gathered}
\text { Alice } \\
a \leftarrow_{\leftarrow}^{\$}\{2, \ldots, \#(\mathrm{E})-2\} \\
\mathrm{A}=\mathrm{a} * \mathrm{G}
\end{gathered}
$$

Bob

$$
\begin{gathered}
b \leftarrow^{\mathfrak{s}}\{2, \ldots, \#(E)-2\} \\
B=b * G
\end{gathered}
$$

$$
S=a * B(\bmod p)
$$

$$
\mathrm{S}=\mathrm{b} * \mathrm{~A}(\bmod \mathrm{p})
$$

$\stackrel{s}{\leftarrow}=$ "uniform random sample from"

Section 3

RSA

Asymmetric Encryption

- XOR and Diffie-Hellman were symmetric encryption
- What about asymmetric encryption?
- Rather than a shared secret key, we can have a public key that anyone can use to encrypt a message to send us, but only we can decrypt the message
- RSA is one such asymmetric cryptosystem.

Totients and Euler's Theorem

- We call $\phi(n)$ Euler's "totient" function
- $\phi(\mathrm{n})=$ the number of numbers ≥ 0 that share no factors with n
- Euler's Theorem: If a and n share no factors, then $a^{\phi(n)} \equiv 1(\bmod n)$
- This theorem is the basis for the RSA cryptosystem

The Hard Problem In RSA

- Multiplication is easy
- Factoring is hard
- let p and q be large primes.
- If $\mathrm{n}=\mathrm{p} * \mathrm{q}$, then $\phi(\mathrm{n})=(\mathrm{p}-1) *(\mathrm{q}-1)$
- Given n, since p and q are large, factoring is hard!
- Thus, finding $\phi(\mathrm{n})$ is hard

The RSA Cryptosystem

- Let e be a public exponent, usually $\mathrm{e}=2^{16}+1=65537$
- Alice generates large (>256 or even >512 bits) secret primes p, q
- Alice then calculates $\mathrm{n}=\mathrm{p} * \mathrm{q}$ and releases it as a public key. Then they calculate $\phi(n)=(p-1) *(q-1)$ as a private key.
- Knowing $\phi(\mathrm{n})$, compute d such that $\mathrm{ed} \equiv 1(\bmod \phi(\mathrm{n}))$
- If you know $\phi(\mathrm{n})$, this is fast using the Extended Euclidian Algorithm
- Bob computes $\mathrm{c}=\mathrm{m}^{\mathrm{e}}$ and sends it to Alice
- Then Alice can compute $\mathrm{c}^{\mathrm{d}} \equiv \mathrm{m}(\bmod \mathrm{n})$

Correctness

- Remember, modular arithetic is arithmetic using remainders
- So if $a \equiv b(\bmod n)$ then we should have that $a=b+k n$ for some k.
- ed $\equiv 1(\bmod \phi(\mathrm{n}))$. So ed $=1+\mathrm{k} \cdot \phi(\mathrm{n})$ for some k
$c^{\mathrm{d}} \equiv\left(\mathrm{m}^{\mathrm{e}}\right)^{\mathrm{d}} \equiv \mathrm{m}^{\mathrm{ed}} \equiv \mathrm{m}^{1+\mathrm{k} \cdot \phi(\mathrm{n})} \equiv \mathrm{m} *\left(\mathrm{~m}^{\phi(\mathrm{n})}\right)^{\mathrm{k}} \equiv \mathrm{m} * 1^{\mathrm{k}} \equiv \mathrm{m} \quad(\bmod \mathrm{n})$

Attacks

- Small primes: can be easy to brute force
- Smooth primes: Chinese Remainder Theorem strikes again!
- Large public n or small $\phi(\mathrm{n})$: Weiner's Attack
- Oracles: Get your pen and paper, do the algebra!
- Ducks (Protip: Don't use pastebin.com as secret storage)
- etc... (Google is your best friend)

Next Meetings

2023-10-19 - This Thursday

- PWN I with Sam

2022-10-22 - Next Sunday

- PWN II with Kevin

ctf.sigpwny.com
 sigpwny\{R1v35t_5ham1r_4d13man\}

Thanks for listening!

[^0]: ${ }^{1}$ Sunzi Suanjing

