
FA2022 Week 04

Reverse Engineering I
Richard and Pete

- Fall CTF 2022
- This Saturday, CIF 3039 12 - 6PM!
- Bring your friends

- No meeting this Sunday

Announcements

ctf.sigpwny.com

sigpwny{plz_no_nsa_backdoor}

Table of Contents

- RE
- What is reverse engineering?
- Compilation
- Executables
- Static vs dynamic analysis

- Ghidra
- Demo

- GDB
- Demo

What is Reverse Engineering?

- Figure out how a program works
- Crack programs and write keygens?
- Find secrets in the program?
- Find bugs in the code?

- Many different languages, different strategies for RE
- Today: C/C++ on Linux ("ELF binaries")

Source code

Compiler
(Clang) Executable

Compilation

Executable

- Processor understands machine code
- Registers & stack

- Register: store 64 bit number
- Stack: function local variables
- Heap: malloc’d memory
- Data segment: global variables

Static vs Dynamic Analysis

- Static
- Tools: Ghidra
- Decompile
- Debugging analogy: read source code

- Dynamic
- Tools: GNU Debugger (GDB)
- Run the program
- Set breakpoints, step through, try various inputs
- Debugging analogy: print statements after running

https://godbolt.org/

Reverse it!

Ghidra to the rescue!

- Open source disassembler/decompiler
- Disassembler: binary to assembly
- Decompiler: assembly to pseudo-C

- Written by the NSA 😳

Ghidra to the rescue!

Ghidra Follow Along
Open Ghidra!

sigpwny.com/rev_setup

Download "debugger" from https://ctf.sigpwny.com/challenges

https://sigpwny.com/rev_setup
https://ctf.sigpwny.com/challenges

Dynamic Analysis with GDB

- Run program, with the
ability to pause and
resume execution

- View registers, stack,
heap

- Steep learning curve
- Important: chmod +x

./chal to run file

git clone

https://github.com

/pwndbg/pwsndbg

cd pwndbg

./setup.sh

pwndbg

GDB Follow Along
Same file as Ghidra follow along (debugger)

- Get started:
- View all functions in list on left side of screen. Double click main to

decompile main
- Decompiler:

- Middle click a variable to highlight all instances in decompilation
- Type “L” to rename variable
- “Ctrl+L” to retype a variable
- Type “;” to add an inline comment on the decompilation and assembly
- Alt+Left Arrow to navigate back to previous function

- General:
- Double click an XREF to navigate there
- Search -> For Strings -> Search to find all strings (and XREFs)
- Choose Window -> Function Graph for a graph view of disassembly

Ghidra Cheat Sheet

- b main - Set a breakpoint on the main function
- b *main+10 - Set a breakpoint a couple instructions into main

- r - run
- r arg1 arg2 - Run program with arg1 and arg2 as command line arguments. Same as

./prog arg1 arg2
- r < myfile - Run program and supply contents of myfile.txt to stdin

- c - continue
- si - step instruction (steps into function calls)
- ni - next instruction (steps over function calls)
- x/32xb 0x5555555551b8 - Display 32 hex bytes at address 0x5555555551b8

- x/4xg addr - Display 4 hex “giants” (8 byte numbers) at addr
- x/16i $pc - Display next 16 instructions at $rip
- x/s addr - Display a string at address
- x/4gx {void*}$rcx - Dereference pointer at $rcx, display 4 QWORDs
- p/d {int*}{int*}$rcx - Dereference pointer to pointer at $rcx as decimal

- info registers - Display registers (shorthand: i r)
- x86 Linux calling convention ("System V ABI"): RDI, RSI, RDX, RCX, R8, R9

GDB Cheat Sheet

https://en.wikipedia.org/wiki/X86_calling_conventions#System_V_AMD64_ABI

Go try for yourself!

• https://ctf.sigpwny.com
• Start with first_re
• Practice practice practice! Ask for help!

https://ctf.sigpwny.com

Next Meetings

2022-09-24 - This Saturday
- Fall CTF!!!
- Play in our annual beginners CTF!
2022-09-25 - This Sunday
- No meeting!
2022-09-29 - Next Thursday
- OSINT
- Open Source Intelligence - stalk your targets!!

