
ARM Assembly
SP2024 Week 03 • 2024-02-08

Sam Ruggerio and Richard Liu

Announcements

- Next Weekend, Feb 16 @ 10pm: LACTF Starts
- We will be in person again! Free pizza/food for participants!

sigpwny{costs_an_arm_and_a_leg}
ctf.sigpwny.com

A Recap on Assembly

- A human readable abstraction over machine code
 48 05 DE C0 37 13 -> add rax, 0x1337c0de

- Low Level Languages (e.g. C/C++) are compiled to machine
code, which have corresponding assembly instructions

- The processor maintains the Stack, Registers, and Instruction
Memory as the main structures to execute programs.

- See Week 5 from FA23 for the first (x86) assembly meeting!

Overview

- Prerequisite: x86-64 Assembly
- Background
- ARM Assembly
- Running ARM

Background

What is an ISA?

- Instruction Set Architecture is the specification for what
instructions a processor needs to support and how it
manipulates memory

- x86/x64, ARM, and RISC-V are example ISAs
- This means you can design your processor however you

want, as long as you meet the ISA spec, you've made a(n)
[ISA] processor.

RISC vs CISC

- RISC stands for Reduced Instruction Set Computer
- Under most cases in RISC, 1 instruction takes 1 cycle,

separate instructions for memory load/store, fixed width
instruction length. ARM, MIPS, RISC-V are all RISC ISAs

- CISC is Complex Instruction Set Computer
- Anything not RISC. Instructions can take multiple cycles and

can directly operate on memory. x86 is a CISC ISA.

What is ARM™

- Founded in 1990 as Advanced RISC Machines
- The most popular RISC format that exists, used in Apple

Silicon and Mobile processors, as well as many embedded
devices.

- ARM's ISA is licenced, meaning if you want to produce chips,
royalties are paid to ARM for the chips produced.

- Heavily uses Performance/Efficiency Core splits in CPUs

ARM vs x86-64

- Fixed Width Instructions
- Explicit Memory Load/Store
- 1 dest, 2 source vs 1 dest & 1 source
- Weak Memory Model (FENCE)
- No segmented memory (canaries easily readable)

What Runs ARM?

- Many IoT devices
- All smartphones
- Apple Macbooks post 2020
- Supercomputers

Versioning

- two sets of version numbers
- Architecture version (i.e. ARMv7, ARMv8, etc.)
- Core version (ARM11, Cortex-M3, Cortex-A7)

- A: application
- R: realtime
- M: microcontroller

- AArch64
- 64-bit register (31 general purpose), 32-bit instructions

- AArch32
- 32-bit registers (15 general purpose), 32-/16-bit instructions

ARM Assembly

Register Convention

AArch64

- x0, …, x30 64-bit
- w0, …, w30 32-bit

Example

- calling convention and stack frames
- (see next slide)

0000000100003f50 <_nest>:
100003f50: d65f03c0 ret

0000000100003f54 <_foo>:
100003f54: d10083ff sub sp, sp, #32
100003f58: a9017bfd stp x29, x30, [sp, #16]
100003f5c: 910043fd add x29, sp, #16
100003f60: b81fc3a0 stur w0, [x29, #-4]
100003f64: 97fffffb bl 0x100003f50 <_nest>
100003f68: b85fc3a8 ldur w8, [x29, #-4]
100003f6c: 11000900 add w0, w8, #2
100003f70: a9417bfd ldp x29, x30, [sp, #16]
100003f74: 910083ff add sp, sp, #32
100003f78: d65f03c0 ret

0000000100003f7c <_main>:
100003f7c: d10083ff sub sp, sp, #32
100003f80: a9017bfd stp x29, x30, [sp, #16]
100003f84: 910043fd add x29, sp, #16
100003f88: b81fc3bf stur wzr, [x29, #-4]
100003f8c: 52800060 mov w0, #3
100003f90: 97fffff1 bl 0x100003f54 <_foo>
100003f94: a9417bfd ldp x29, x30, [sp, #16]
100003f98: 910083ff add sp, sp, #32
100003f9c: d65f03c0 ret

Stores pair (fp and lr)

Save argument before call

Compute value

Stack cleanup

Addressing

ldr r2, [r0] // r2 = [r0]

str r2, [r1, #2] // [r1 + 2] = r2 (offset)

str r2, [r1, #4]! // r1 += 4, [r1] = r2, (pre-index)

ldr r3, [r1], #4 // r3 = [r1], r1 += 4 (post index)

str r2, [r1, r3, LSL#2]! // r1 += r3 << 2; [r1] = r2

Load/store multiple

push {r0, r1} // <- these are equivalent

stmdb sp!, {r0, r1} // <-

- suffixes: -ia, -ib, -da, -db
- determine order (increase/decrease after/before)

- with !, write result pointer back to register
- push = stmdb, pop = ldmia

Conditional Execution

- While you can still branch with ARM like x86 jCC:
cmp r1, r2

beq loop

- ARM supports conditional execution:
cmp r1, r2

addeq r3,r4

movlt r1,r10

Thumb Mode

- 16 bit instruction width
- No conditional execution
- Thumb-2 (introduced 2003) mixed 16- and 32-bit instructions
- use BX/BLX and set LSB of addr to 1 to switch to Thumb
- Makes reverse engineering harder

ARM Security Features

- Pointer Authentication (PAC)
- Pointers don't use the full 64 bits in memory space
- Use extra space for authentication values to prevent ROP/BOF
- Low overhead: Call PACIASP at the start, AUTIASP before return

- Branch Target Identification (BTI)
- Branching should only lead to specific points in code.
- Make a NOP instruction: PACBTI/BXAUT
- If a branch does not go here, crash out.

Running ARM

Running ARM with qemu

- You'll need to get qemu and helper packages
- qemu-user qemu-user-static gcc-aarch64-linux-gnu

binutils-aarch64-linux-gnu binutils-aarch64-linux-gnu-dbg
build-essential

- If you have a STATIC binary:
- qemu-aarch64-static ./executable

- If you have a DYNAMIC binary:
- qemu-aarch64 -L /usr/aarch64-linux-gnu ./executable

- If you want to build a binary:
- aarch64-linux-gnu-gcc -o executable file.c

Debugging ARM with gdb-multiarch

- Install the gdb-multiarch package. This should still be
compatible with gdb-peda or GEF.

- Run qemu in debug mode:
- qemu-aarch64 -g 9001 -L /usr/aarch64-linux-gnu ./exe

- Run gdb-multiarch and connect to the process:
- gdb-multiarch ./exe
- gdb> target remote localhost:9001

Resources

- https://azeria-labs.com/writing-arm-assembly-part-1/
- 7-part ARM series

https://azeria-labs.com/writing-arm-assembly-part-1/

Next Meetings

2024-02-11 • This Sunday
- PWN III: Heap Exploitation with Sam
- Learn modern PWN techniques!
2024-02-15 • Next Thursday
- PWN IV: ROP with Akhil
- Learn how to complete PWN exploit chains and achieve RCE!
2024-02-16 • Next Weekend
- LACTF
- UCLA's Major CTF Event! All are welcome!

sigpwny{costs_an_arm_and_a_leg}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

