
Mayhem
FA2025 • 2025-11-02

Ronan Boyarski, Nikhil Date

General

Announcements
- We are playing BuckeyeCTF 2025 hosted by OSU!

- This Friday (11/7) at 7:00pm (room TBD, likely Siebel 2406)
- Unlike most CTFs, Buckeye offers prizes to the top 3 undergraduate teams
- No graduate students are allowed to play
- Try hard and win that prize!

Background: Manual bug-finding
- Traditionally, you would do this by hand
- Start by using a debugger and hook the main way you write input

(usually socket recv() function)
- Sync your debugger with your disassembler and check the control

flow graph to find calls to unsafe functions
- For example, looking for calls to memcpy() where you can specify the wrong

input size
- Can be subtle, like finding multiple chained memcpy calls where size is

fixed but you can get some fixed overflow into a dangerous region
- Reliable, but slow and depends on a skilled reverse engineer
- How much of this can we automate?

Background: Symbolic Execution
- Concrete execution: run program with concrete inputs
- Symbolic execution: run program with symbolic inputs

- “Emulate” effects of each instruction on program state
- Program state contains symbolic values

- For binary-only analysis program state = registers + memory
- Have to look at all possible paths

- For each program state, track “path condition” that led to that path
- Why do we care?

- “Exhaustively” explores the state space of the program, can then solve for
conditions implying bugs/vulnerabilities

- Is my instruction pointer a symbolic value that can be affected by the input?
- Learn more: https://www.youtube.com/watch?v=yRVZPvHYHzw

Background: Symbolic Execution

Symbolic Execution Challenges
- State explosion

- In a complex program, number of paths/states can blow up very quickly
- What if you have loops?

- Modeling the Environment
- How to model library calls (e.g. malloc), system calls, etc.

- Symbolic memory
- Let’s say I read/write memory with a symbolic address
- What to do?
- Memory reasoning is essential because many bugs are related to memory

corruption

Problem Setting
- We have a binary we want to exploit

- Could be a really fun target, like Windows SMB server, iOS messaging app,
or kernel driver

- No debugging information, large and annoying (hard to manually
exploit)

- Want to automatically find exploitable bugs and generate exploits
- This means we don’t want false positives
- Ideally we don’t want false negatives either :)

Unleashing MAYHEM on Binary Code
- Symbolic execution system for automatically finding vulnerabilities

with proof-of-vulnerability (exploit)
- Shows that symbolic execution is practical for finding bugs and

generating exploits on real-world programs
- “Hybrid symbolic execution” to address state explosion issues
- “Index-based memory modeling” to address memory modeling issues

- "Every bug reported by MAYHEM is accompanied by a working
shell-spawning exploit"

- Modified? version of MAYHEM system won the 2016 DARPA Cyber
Grand Challenge (CGC)

MAYHEM System Design
- Usage on orzhttpd HTTP server

- mayhem -sym-net 80 400 ./orzhttpd

“Online” vs “Offline” Execution
- Online execution forks the symbolic executor at each branch
- Offline explores a single path at a time and reruns the symbolic

executor from the beginning on each path
- What are the tradeoffs?

Hybrid Execution
- Tries to strike a middle ground

between online and offline execution
- Execute online until we hit memory

cap
- Then save “checkpoints” for all active

executor states
- “Checkpoints” throw out the concrete

state and so compress the memory
usage over an active symbolic executor
state

- Restart online execution from one of
these checkpoints (chosen according
to certain heuristics)

CEC + SES Design
- CEC = “Concrete Executor Client”

- natively executes program fragments with purely concrete state
- performs taint analysis to detect symbolic values
- sends tainted blocks to SES for symbolic execution

- SES = “Symbolic Executor Server”
- symbolically executes tainted blocks and sends paths to be executed to

CEC according to path prioritization heuristics
- Tries to optimize over purely symbolic emulation of all instructions
- Path prioritization

- Prioritize paths with more coverage a la coverage-guided fuzzing
- Prioritize paths with symbolic instruction pointer

Index-Based Memory Modeling
- One approach to model memory: concretize every memory access

- If I access M[i] where i is symbolic, just pick some concrete value that
satisfies the symbolic expression

- What are the tradeoffs?
- “More than 40% of the programs required symbolic memory

modeling”
- Another approach: fully symbolic memory

- What are the tradeoffs?
- MAYHEM approach: writes are concretized, reads are not

- load at address i generates a memory object M that contains all values i
could refer to

- But try to do some optimizations that speed up reads
- Try to put some bounds on a pointer (“value set analysis”)
- See paper for gory details

Bug Example
#define BUFSIZE 4096

typedef struct {

char buf[BUFSIZE];

int used;

} STATIC_BUFFER_t;

typedef struct conn {

STATIC_BUFFER_t read_buf;

… // irrelevant

} CONN_t;

static void serverlog(LOG_TYPE_t type, const char* format, …)
{

… // irrelevant

if (format) {

va_start (ap, format);

vsprintf(buf, format, ap);

va_end(ap);

}

fprintf(log, buf); // format string bug

fflush(log);

}

HTTP_STATE_t http_read_request(CONN_t *conn) {

… // irrelevant

while (conn->read_buf.used < BUFSIZE) {

 sz = static_buffer_read(conn, &conn->read_buf);

 if (sz < 0) {

…
conn->read_buf.used += sz;

if (memcmp(&conn->read-buf.buf[conn->read_buf.used]

 - 4, "\r\n\r\n", 4) == 0 { break; }

 }

if (conn->read_buf.used >= BUFSIZE) {

 conn->status.st = HTTP_STATUS_400;

 return HTTP_STATE_ERROR;

}

serverlog(ERROR_LOG, "%s\n", conn->read_buf.buf);

} // serverlog user input comes from the outside (HTTP)

http://status.st

How it works
- Taint tracker would see that we are calling fprintf with a

user-specified string, which lets us control how we access stack
memory
- At this point, we would suspend concrete execution, and determine where

we can branch to
- Pathing to new places is modeled as additional constraints (one per jump)

How it works
- When we hit any important parts of the program, the SES will try to

build a solution to its symbolic equation
- If it can find one, then any solution is, by necessity, a working exploit
- It will crawl through each of these possibilities by context switching back to

the client
- MAYHEM will continue to explore until either a solution is returned,

we hit a user-specified maximum runtime, or all execution paths
have been exhausted

Results
- 29 exploitable vulnerabilities (2 0-days)
- Relatively limited bug classes (buffer overflow, format string,

function pointer overwrite)
- Won in the 2016 DARPA Cyber Grand Challenge, although those

binaries were relatively simplified compared to hardened real-world
targets

- Darpa had the AIxCC challenge this year, which was like the 2016
Cyber Grand Challenge but using LLMs on top of these techniques

Discussion
- Is it reasonable to care about no false positives so much, as

MAYHEM does?
- Can we extend the MAYHEM idea to handle finding more complex

bug classes, like heap exploits and logic bugs? How would you go
about modeling a heap allocator or important logical state?

- Is there a better way to model memory than MAYHEM’s approach?
- Do you see any problems with this approach?
- Do you have any ideas to make this approach better?

Discussion
- Are there other new techniques that would help amplify the

effectiveness of fuzzing or symbolic execution, or otherwise win
back some of the intuition and creativity of a human exploit
developer? LLMs have been surprisingly middling thus far…

- Which do you think moves faster, automated bug finding, or
exploitation mitigation techniques? How would a modern redesign
of this concept fare against modern security mitigations?

Next Meetings
2025-11-06 • This Thursday
- Game Hacking
- Go write some cheats and finally learn how Windows works
2025-11-09 • Next Sunday
- Movie Social
- We have a movie in mind but we're keeping it secret 🙂
2025-11-13 • Next Thursday
- Rubber Ducky / Bad USB
- Turn physical access into RCE with this one simple trick

