éﬂg SIGPwny

CEED FA2025 o 2025-11-02

Mayhem

Ronan Boyarski, Nikhil Date

Announcements

- We are playing BuckeyeCTF 2025 hosted by OSU!
- This Friday (11/7) at 7:00pm (room TBD, likely Siebel 2406)
- Unlike most CTFs, Buckeye offers prizes to the top 3 undergraduate teams
- No graduate students are allowed to play
- Try hard and win that prize!

R

Background: Manual bug-finding

- Traditionally, you would do this by hand
- Start by using a debugger and hook the main way you write input
(usually socket recv() function)

- Sync your debugger with your disassembler and check the control
flow graph to find calls to unsafe functions
- For example, looking for calls to memcpy() where you can specify the wrong
iInput size
- Can be subtle, like finding multiple chained memcpy calls where size is
fixed but you can get some fixed overflow into a dangerous region
- Reliable, but slow and depends on a skilled reverse engineer

- How much of this can we automate?

R

N~

Background: Symbolic Execution

- Concrete execution: run program with concrete inputs
- Symbolic execution: run program with symbolic inputs
- “Emulate” effects of each instruction on program state
- Program state contains symbolic values
- For binary-only analysis program state = registers + memory
- Have to look at all possible paths
- For each program state, track “path condition” that led to that path
- Why do we care?
- “Exhaustively” explores the state space of the program, can then solve for
conditions implying bugs/vulnerabilities
- Is my instruction pointer a symbolic value that can be affected by the input?
- Learn more: https://www.youtube.com/watch?v=yRVZPvHYHzw

R

N~

Background: Symbolic Execution

Swaps 2 integers Symbolic Execution Tree

int x. v:
i ’y' x:X-}f:Y

if (x>) { S

| frue

R x= X+Y

=XV \
Y g | ly=X+Y-Y=X

X =K==
k=XtV-X=Y

if(x>y)
| Y=X

assert false: e — o tme
[PC:X>YAY>X]END|

Symbolic Execution Challenges

- State explosion
- In a complex program, number of paths/states can blow up very quickly

- What if you have loops?
- Modeling the Environment
- How to model library calls (e.g. malloc), system calls, etc.

- Symbolic memory
- Let’s say | read/write memory with a symbolic address

- What to do?
- Memory reasoning is essential because many bugs are related to memory

corruption

R

Problem Setting

- We have a binary we want to exploit
- Could be a really fun target, like Windows SMB server, iOS messaging app,
or kernel driver

- No debugging information, large and annoying (hard to manually
exploit)

- Want to automatically find exploitable bugs and generate exploits

- This means we don’t want false positives

- Ideally we don’t want false negatives either :)

R

Unleashing MAYHEM on Binary Code

Symbolic execution system for automatically finding vulnerabilities
with proof-of-vulnerability (exploit)
Shows that symbolic execution is practical for finding bugs and

generating exploits on real-world programs
- "Hybrid symbolic execution” to address state explosion issues
- “Index-based memory modeling” to address memory modeling issues

"Every bug reported by MAYHEM is accompanied by a working
shell-spawning exploit”

Modified? version of MAYHEM system won the 2016 DARPA Cyber
Grand Challenge (CGQ)

R

MAYHEM System Design

- Usage on orzhttpd HTTP server
- mayhem -sym-net 80 400 ./orzhttpd

(CEC) (SES)
Concrete Execution Client Symbolic Execution Server

Figure 2: MAYHEM architecture

0

“Online” vs “Offline” Execution

- Online execution forks the symbolic executor at each branch

- Offline explores a single path at a time and reruns the symbolic
executor from the beginning on each path

- What are the tradeoffs?

Figure 3: Hybrid execution tries to combine the speed of
online execution and the memory use of offline execution to

efficiently explore the input space.

0

Hybrid Execution

- Tries to strike a middle ground
between online and offline execution

2.0 x

- Execute online until we hit memory
cap 5 1o
- Then save “checkpoints” for all active R
executor states 2
- “Checkpoints” throw out the concrete L sox
state and so compress the memory Lo
usage over an active symbolic executor i =l =
State 0 500 1000 Tim1eS(Os(lC.) 2000 2500 3000

- ReStart Onllne executlon from One Of Figure 7: Memory use in online, offline, and hybrid mode.
these checkpoints (chosen according
to certain heuristics)

CEC + SES Design

- CEC = “Concrete Executor Client”
- natively executes program fragments with purely concrete state
- performs taint analysis to detect symbolic values
- sends tainted blocks to SES for symbolic execution
- SES = “Symbolic Executor Server”
- symbolically executes tainted blocks and sends paths to be executed to
CEC according to path prioritization heuristics
- Tries to optimize over purely symbolic emulation of all instructions
- Path prioritization
- Prioritize paths with more coverage a la coverage-guided fuzzing
- Prioritize paths with symbolic instruction pointer

R

N~

Index-Based Memory Modeling

- One approach to model memory: concretize every memory access
- If access M][i] where i is symbolic, just pick some concrete value that
satisfies the symbolic expression
- What are the tradeoffs?
- “More than 40% of the programs required symbolic memory
modeling”

- Another approach: fully symbolic memory
- What are the tradeoffs?

- MAYHEM approach: writes are concretized, reads are not
- load at address i generates a memory object M that contains all values i

could refer to

But try to do some optimizations that speed up reads

Try to put some bounds on a pointer (“value set analysis”)

See paper for gory details

R

N~

Bug Example

#define BUFSIZE 4096
typedef struct {
char buf[BUFSIZE];
int used;
} STATIC_BUFFER_t;
typedef struct conn {
STATIC_BUFFER_t read_buf;
... // irrelevant
} CONN_t;
?tatic void serverlog(LOG_TYPE_t type, const char* format,

... // irrelevant

if (format) {
va_start (ap, format);
vsprintf(buf, format, ap);
va_end(ap);

}

fprintf(log, buf); // format string bug

fflush(log);

)

HTTP_STATE_t http read request(CONN_t *conn) {
... // irrelevant
while (conn->read_buf.used < BUFSIZE) {
sz = static_buffer_read(conn, &conn->read_buf);
if (sz < @) {

conn->read buf.used += sz;
if (memcmp(&conn->read-buf.buf[conn->read_buf.used]
- 4, "\r\n\r\n", 4) == 0 { break; }
}
if (conn->read_buf.used >= BUFSIZE) {
conn->status.st = HTTP_STATUS_400;
return HTTP_STATE_ ERROR;
}
serverlog(ERROR_LOG, "%s\n", conn->read buf.buf);

} // serverlog user input comes from the outside (HTTP)

=

http://status.st

How it works

- Taint tracker would see that we are calling fprintf with a
user-specified string, which lets us control how we access stack

memory

- At this point, we would suspend concrete execution, and determine where
we can branch to

- Pathing to new places is modeled as additional constraints (one per jump)

R

N~

How it works

- When we hit any important parts of the program, the SES will try to

build a solution to its symbolic equation

- If it can find one, then any solution is, by necessity, a working exploit

- It will crawl through each of these possibilities by context switching back to
the client

- MAYHEM will continue to explore until either a solution is returned,
we hit a user-specified maximum runtime, or all execution paths
have been exhausted

R

N~

Results

- 29 exploitable vulnerabilities (
- Relatively limited bug classes
function pointer overwrite)

- Won in the 2016 DARPA Cyber Grand Challenge, although those
binaries were relatively simplified compared to hardened real-world
targets

- Darpa had the AIxCC challenge this year, which was like the 2016
Cyber Grand Challenge but using LLMs on top of these techniques

2 0-days)
(buffer overflow, format string,

R

N~

Discussion

- Is it reasonable to care about no false positives so much, as
MAYHEM does?

- Can we extend the MAYHEM idea to handle finding more complex
bug classes, like heap exploits and logic bugs? How would you go
about modeling a heap allocator or important logical state?

- Is there a better way to model memory than MAYHEM’s approach?

- Do you see any problems with this approach?

- Do you have any ideas to make this approach better?

R

N~

Discussion

- Are there other new techniques that would help amplify the
effectiveness of fuzzing or symbolic execution, or otherwise win
back some of the intuition and creativity of a human exploit
developer? LLMs have been surprisingly middling thus far...

- Which do you think moves faster, automated bug finding, or
exploitation mitigation techniques? How would a modern redesign
of this concept fare against modern security mitigations?

R

N~

Next Meetings

2025-11-06 « This Thursday

- Game Hacking
- Go write some cheats and finally learn how Windows works

2025-11-09 « Next Sunday

- Movie Social
- We have a movie in mind but we're keeping it secret @

2025-11-13 « Next Thursday

- Rubber Ducky / Bad USB
- Turn physical access into RCE with this one simple trick

R

