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Announcements
- We are playing BuckeyeCTF 2025 hosted by OSU!

- This Friday (11/7) at 7:00pm (room TBD, likely Siebel 2406)
- Unlike most CTFs, Buckeye offers prizes to the top 3 undergraduate teams
- No graduate students are allowed to play
- Try hard and win that prize!



Finding bugs in binaries
- Traditionally, you would do this by hand
- Start by using a debugger and hook the main way you write input 

(usually socket recv() function)
- Sync your debugger with your disassembler and check the control 

flow graph to find calls to unsafe functions
- For example, looking for calls to memcpy() where you can specify the wrong 

input size
- Can be subtle, like finding multiple chained memcpy calls where size is 

fixed but you can get some fixed overflow into a dangerous region
- Reliable, but slow and depends on a skilled reverse engineer
- How much of this can we automate?



Fuzzing
- A sort of randomized testing designed to find memory bugs
- Fuzzer tries to select inputs that will explore as much of the 

program as possible
- The idea is that, the more of the program we explore, the higher 

likelihood we have of discovering a bug
- Fuzzing is very successful in practice

- Example fuzzers include: AFL, libfuzzer, syzkaller

"More bugs than eyes. Setup Syzkaller on a junk pc tonight, by 
Sunday you will have unique, likely exploitable kernel bugs" -Ravi



Symbolic Execution
- Normal execution is known as "concrete" execution
- Symbolic execution: make the program inputs symbolic values
- Track symbolic expressions representing program state
- Use this to look at all possible paths
- Using symbolic execution, we can solve for whether we can mess 

with important bits of program state (like the instruction pointer)
- Problems:

- Path explosion: symbolic execution does not scale well with big programs
- Environment: how are you tracking heap allocations, syscalls, etc.
- Reasoning about memory: how do you track memory accesses, the most 

important part of our manual bug finding method?



Problem Setting
- We have a binary we want to exploit

- Could be a really fun target, like Windows SMB server, iOS messaging app, 
or kernel driver

- Said binary has no debugging information, and is large and 
annoying

- We would like to automate finding bugs in all binaries of that form
- For example, try to find exploitable bug in every kernel driver

- We want to automatically generate patches for all of our exploits
- We want to make sure that what the machine gives us is reliable 

and verifiable (no false positives > no false negatives)



MAYHEM
- 2016 DARPA Cyber Grand Challenge winner, developed by CMU
- "Every bug reported by MAYHEM is accompanied by a working 

shell-spawning exploit"
- "To make exploit generation possible at the binary-level, MAYHEM 

addresses two major technical challenges: actively managing 
execution paths without exhausting memory, and reasoning about 
symbolic memory indices, where a load or a store address depends 
on user input. To this end, we propose two novel techniques: 1) 
hybrid symbolic execution for combining online and offline 
(concolic) execution to maximize the benefits of both techniques, 
and 2) index-based memory modeling."



High-Level Idea
- What if we combine concrete execution with symbolic execution, so 

we can reason about real program state using symbolic execution?
- Model a formula for whether we can control the instruction pointer, 

put attacker supplied data in memory, and have a memory 
protection primitive to execute said code
- If symbolic execution returns SAT, we can exploit the program

- How do they handle path explosion?
- No repeated work
- No ballooning higher than the current machine's RAM at any one time
- Reason about symbolic memory where a load or store address depends on 

user input



Hybrid Symbolic Execution
- Execution alternates between online and offline symbolic runs
- Acts like a virtual memory manager in an OS, where we swap out 

symbolic execution engines
- When we are overburdened, we swap out the current symbolic state and 

cache it, like a swapfile for virtual memory
- Caching formulas prevents re-execution, ensuring forward progress

- Concretization constraints prevent false positives
- Pure symbolic execution is hard

- For example, memcmp creates a new branch for each character in the input 
buffer

- No need to do symbolic execution for the setup before we are opening the 
program to any attacker input



Bug Example
#define BUFSIZE 4096

typedef struct {

char buf[BUFSIZE];

int used;

} STATIC_BUFFER_t;

typedef struct conn {

STATIC_BUFFER_t read_buf;

… // irrelevant

} CONN_t;

static void serverlog(LOG_TYPE_t type, const char* format, …) 
{

… // irrelevant

if (format) {

va_start (ap, format);

vsprintf(buf, format, ap);

va_end(ap);

}

fprintf(log, buf); // format string bug

fflush(log);

}

HTTP_STATE_t http_read_request(CONN_t *conn) {

… // irrelevant

while (conn->read_buf.used < BUFSIZE) {

  sz = static_buffer_read(conn, &conn->read_buf);

  if (sz < 0) {

…
conn->read_buf.used += sz;

if (memcmp(&conn->read-buf.buf[conn->read_buf.used]

         - 4, "\r\n\r\n", 4) == 0 { break; }

  }

if (conn->read_buf.used >= BUFSIZE) {

  conn->status.st = HTTP_STATUS_400;

  return HTTP_STATE_ERROR;

}

serverlog(ERROR_LOG, "%s\n", conn->read_buf.buf);

} // serverlog user input comes from the outside (HTTP)

http://status.st


How it works
- There's a concrete runner (client) and symbolic executor (server)
- Client has a taint tracker to see if user input does bad things

- If so, pass it to the symbolic executor, and see if we can solve to do even 
worse things

- Works by checking if any basic blocks are corrupted
- Server decides tasking for the client and where to explore
- So, taint tracker would see that we are calling fprintf with a 

user-specified string, which lets us control how we access stack 
memory
- At this point, we would suspend concrete execution, and determine where 

we can branch to
- Pathing to new places is modeled as additional constraints (one per jump)



How it works
- When we hit any important parts of the program, the SES will try to 

build a solution to its symbolic equation
- If it can find one, then any solution is, by necessity, a working exploit
- It will crawl through each of these possibilities by context switching back to 

the client
- MAYHEM will continue to explore until either a solution is returned, 

we hit a user-specified maximum runtime, or all execution paths 
have been exhausted



Results
- 29 exploitable vulnerabilities (2 0-days)
- Relatively limited bug classes (buffer overflow, format string, 

function pointer overwrite)
- Won in the 2016 DARPA Cyber Grand Challenge, although those 

binaries were relatively simplified compared to hardened real-world 
targets

- Darpa had the AIxCC challenge this year, which was like the 2016 
Cyber Grand Challenge but using LLMs on top of these techniques



Discussion
- Do you think symbolic execution can handle finding more complex 

bug classes, like heap exploits and logic bugs? How would you go 
about modeling a heap allocator or important logical state?

- Are there other new techniques that would help amplify the 
effectiveness of fuzzing or symbolic execution, or otherwise win 
back some of the intuition and creativity of a human exploit 
developer? LLMs have been surprisingly middling thus far…

- Which do you think moves faster, automated bug finding, or 
exploitation mitigation techniques? How would a modern redesign 
of this concept fare against modern security mitigations?



Next Meetings
2025-11-06 • This Thursday
- Game Hacking
- Go write some cheats and finally learn how Windows works
2025-11-09 • Next Sunday
- Movie Social
- We have a movie in mind but we're keeping it secret 🙂
2025-11-13 • Next Thursday
- Rubber Ducky / Bad USB
- Turn physical access into RCE with this one simple trick


