éﬂg SIGPwny

CEED FA2025 o 2025-11-02

Mayhem

Ronan Boyarski, Nikhil Date



Announcements

- We are playing BuckeyeCTF 2025 hosted by OSU!
- This Friday (11/7) at 7:00pm (room TBD, likely Siebel 2406)
- Unlike most CTFs, Buckeye offers prizes to the top 3 undergraduate teams
- No graduate students are allowed to play
- Try hard and win that prize!

R



Finding bugs In binaries

- Traditionally, you would do this by hand
- Start by using a debugger and hook the main way you write input
(usually socket recv() function)

- Sync your debugger with your disassembler and check the control
flow graph to find calls to unsafe functions
- For example, looking for calls to memcpy() where you can specify the wrong
iInput size
- Can be subtle, like finding multiple chained memcpy calls where size is
fixed but you can get some fixed overflow into a dangerous region
- Reliable, but slow and depends on a skilled reverse engineer

- How much of this can we automate?

R

N~



Fuzzing

- A sort of randomized testing designed to find memory bugs

- Fuzzer tries to select inputs that will explore as much of the
program as possible

- The idea is that, the more of the program we explore, the higher
likelihood we have of discovering a bug

- Fuzzing is very successful in practice
- Example fuzzers include: AFL, libfuzzer, syzkaller

"More bugs than eyes. Setup Syzkaller on a junk pc tonight, by
Sunday you will have unique, likely exploitable kernel bugs" -Ravi

3



Symbolic Execution

- Normal execution is known as "concrete” execution

- Symbolic execution: make the program inputs symbolic values

- Track symbolic expressions representing program state

- Use this to look at all possible paths

- Using symbolic execution, we can solve for whether we can mess
with important bits of program state (like the instruction pointer)

- Problems:
- Path explosion: symbolic execution does not scale well with big programs
- Environment: how are you tracking heap allocations, syscalls, etc.
- Reasoning about memory: how do you track memory accesses, the most

important part of our manual bug finding method?
&S
N~



Problem Setting

- We have a binary we want to exploit
- Could be a really fun target, like Windows SMB server, iOS messaging app,
or kernel driver

- Said binary has no debugging information, and is large and
annoying

- We would like to automate finding bugs in all binaries of that form
- For example, try to find exploitable bug in every kernel driver

- We want to automatically generate patches for all of our exploits

- We want to make sure that what the machine gives us is reliable
and verifiable (no false positives > no false negatives)

R

N~



MAYHEM

2016 DARPA Cyber Grand Challenge winner, developed by CMU
"Every bug reported by MAYHEM is accompanied by a working
shell-spawning exploit”
"To make exploit generation possible at the binary-level, MAYHEM
addresses two major technical challenges: actively managing
execution paths without exhausting memory, and reasoning about
symbolic memory indices, where a load or a store address depends
on user input. To this end, we propose two novel technigues: 1)
hybrid symbolic execution for combining online and offline
(concolic) execution to maximize the benefits of both technigues,
and 2) index-based memory modeling."

&S

N~



High-Level Idea

- What if we combine concrete execution with symbolic execution, so
we can reason about real program state using symbolic execution?

- Model a formula for whether we can control the instruction pointer,
put attacker supplied data in memory, and have a memory
protection primitive to execute said code
- If symbolic execution returns SAT, we can exploit the program

- How do they handle path explosion?

No repeated work

No ballooning higher than the current machine's RAM at any one time
Reason about symbolic memory where a load or store address depends on

user input
&S
>



Hybrid Symbolic Execution

- Execution alternates between online and offline symbolic runs
- Acts like a virtual memory manager in an OS, where we swap out
symbolic execution engines
- When we are overburdened, we swap out the current symbolic state and

cache it, like a swapfile for virtual memory
- Caching formulas prevents re-execution, ensuring forward progress

- Concretization constraints prevent false positives

- Pure symbolic execution is hard
- For example, memcmp creates a new branch for each character in the input

buffer
- No need to do symbolic execution for the setup before we are opening the

program to any attacker input
&S
N~



Bug Example

#define BUFSIZE 4096
typedef struct {
char buf[BUFSIZE];
int used;
} STATIC_BUFFER_t;
typedef struct conn {
STATIC_BUFFER_t read_buf;
... // irrelevant
} CONN_t;
?tatic void serverlog(LOG_TYPE_t type, const char* format,

... // irrelevant

if (format) {
va_start (ap, format);
vsprintf(buf, format, ap);
va_end(ap);

}

fprintf(log, buf); // format string bug

fflush(log);

)

HTTP_STATE_t http read request(CONN_t *conn) {
... // irrelevant
while (conn->read_buf.used < BUFSIZE) {
sz = static_buffer_read(conn, &conn->read_buf);
if (sz < @) {

conn->read buf.used += sz;
if (memcmp(&conn->read-buf.buf[conn->read_buf.used]
- 4, "\r\n\r\n", 4) == 0 { break; }
}
if (conn->read_buf.used >= BUFSIZE) {
conn->status.st = HTTP_STATUS_400;
return HTTP_STATE_ ERROR;
}
serverlog(ERROR_LOG, "%s\n", conn->read buf.buf);

} // serverlog user input comes from the outside (HTTP)

=


http://status.st

How it works

- There's a concrete runner (client) and symbolic executor (server)

- Client has a taint tracker to see if user input does bad things

- If so, pass it to the symbolic executor, and see if we can solve to do even
worse things

- Works by checking if any basic blocks are corrupted

- Server decides tasking for the client and where to explore

- S0, taint tracker would see that we are calling fprintf with a
user-specified string, which lets us control how we access stack
memory

- At this point, we would suspend concrete execution, and determine where
we can branch to

- Pathing to new places is modeled as additional constraints (one per Jump



How it works

- When we hit any important parts of the program, the SES will try to

build a solution to its symbolic equation

- If it can find one, then any solution is, by necessity, a working exploit

- It will crawl through each of these possibilities by context switching back to
the client

- MAYHEM will continue to explore until either a solution is returned,
we hit a user-specified maximum runtime, or all execution paths
have been exhausted

R

N~



Results

- 29 exploitable vulnerabilities (
- Relatively limited bug classes
function pointer overwrite)

- Won in the 2016 DARPA Cyber Grand Challenge, although those
binaries were relatively simplified compared to hardened real-world
targets

- Darpa had the AIxCC challenge this year, which was like the 2016
Cyber Grand Challenge but using LLMs on top of these techniques

2 0-days)
(buffer overflow, format string,

R

N~



Discussion

- Do you think symbolic execution can handle finding more complex
bug classes, like heap exploits and logic bugs? How would you go
about modeling a heap allocator or important logical state?

- Are there other new techniques that would help amplify the
effectiveness of fuzzing or symbolic execution, or otherwise win
back some of the intuition and creativity of a human exploit
developer? LLMs have been surprisingly middling thus far...

- Which do you think moves faster, automated bug finding, or
exploitation mitigation techniques? How would a modern redesign
of this concept fare against modern security mitigations?

£



Next Meetings

2025-11-06 « This Thursday

- Game Hacking
- Go write some cheats and finally learn how Windows works

2025-11-09 « Next Sunday

- Movie Social
- We have a movie in mind but we're keeping it secret @

2025-11-13 « Next Thursday

- Rubber Ducky / Bad USB
- Turn physical access into RCE with this one simple trick

R



