SP2025 Week 02 o 2025-02-02

Seminar

Fuzzware: Using Precise MMIO Modeling for Effective Firmware Fuzzing

P

Fuzzware

- Fuzzware: Using Precise MMIO Modeling for Effective
Firmware Fuzzing

- Authors: Tobias Scharnowski, Nils Bars, and Moritz Schloegel,
Ruhr-Universitat Bochum; Eric Gustafson, UC Santa Barbara;
Marius Muench, Vrije Universiteit Amsterdam; Giovanni Vigna,
UC Santa Barbara and VMware; Christopher Kruegel, UC
Santa Barbara; Thorsten Holz and Ali Abbasi, Ruhr-Universitat
Bochum

- https://www.usenix.org/system/files/sec22-scharnowski.pdf CK

=

Table of Contents

- Fuzzing

- Problems with fuzzing embedded systems
- Fuzzware

- Discussion

i

Background: Fuzzing

- Coverage-guided random testing

- Fuzzing needs
- Coverage instrumentation
- Input mutator
- Crash oracle

- Fuzzer tries to select inputs that will explore as much of the

program as possible

- Intuition is that we are more likely to find bugs if we explore
more of the program

- Fuzzing has been very successful at finding bugs and is now

a standard technique
- Examples of fuzzers: AFL, libfuzzer A
N~

Background: Embedded Systems

- Small, specialized computer systems
- Smart home devices, industrial logic controllers, avionics

systems, car engine controllers, medical devices, etc.

- Usually safety-critical

&
SO\

/////////,//mm\

Background: Symbolic Execution

- “Concrete execution”: executing a program with concrete
iInputs

- Symbolic execution: makes the inputs symbolic values

- Track symbolic expressions program variables/state

- Look at all possible paths

£

Problem Setting

- We are given the firmware for an embedded system

- We know the CPU architecture

- We don’t know enough about the peripherals to create a
peripheral models for a full-system emulation

- We want to fuzz the firmware and find bugs

£

An Idea

- Emulating embedded systems is hard due to handling

peripheral MMIO accesses
- We also don’t have a good notion of “input” to send fuzzer

testcases to
- Use fuzzer input as MMIO access values!

£

Input Overhead

- All bits in an MMIO read value might not be important

- Amount of “information” in an MMIO value might be less than

the full read size

[B

void perform op() {
// Check réguested operation
switch (mmio->op) {
case A: handle A(); break;
case B: handle B(); break;
case C:
if (mmio->status == SPECIAL) {

e s A L B S S

handle C special(); break;
} else {
10 handle C default(); break;
11 }
12 default: housekeeping|();
13 }
14 }

o
=)

Figure 3: An example of a function that takes actions based on MMIO input
using switch/case and if/else constructs.

Dealing with input overhead

- Use symbolic execution to figure out the “important” MMIO
values (corresponding to code paths)

- Create a model of the peripheral access

- Use fuzzer input to select one of these “important” values

- Improved coverage

£

Fuzzware Design

MMIO

Hardware- E&D Access
Generated ““*“",,,l,,
Value transiate 1 MMIO Access Model
A

Coverage
Feedback

Figure 4: FUZZWARE’s MMIO access handling design. The fuzzing engine
generates a raw input file. Upon MMIO accesses, chunks of the input file are
consumed by MMIO access models and translated into (potentially larger)

hardware-generated values, which are then served to the emulated firmware.

Once the raw input is exhausted, coverage feedback is provided to the fuzzing
engine to guide the fuzzing process.

{4

Discussion

- Is the “input overhead” idea applicable to fuzz software other
than embedded firmware?

- If we had source code for the firmware we were fuzzing, could
we do better than the approach in this paper?

- Can we use the ideas in this paper to do more than just
fuzzing?

- Do you have any ideas to make this better?

- Do you see any problems with this approach?

£

