
SP2025 Week 02 • 2025-02-02

Seminar
Fuzzware: Using Precise MMIO Modeling for Effective Firmware Fuzzing
Nikhil



Fuzzware

- Fuzzware: Using Precise MMIO Modeling for Effective 
Firmware Fuzzing

- Authors: Tobias Scharnowski, Nils Bars, and Moritz Schloegel, 
Ruhr-Universität Bochum; Eric Gustafson, UC Santa Barbara; 
Marius Muench, Vrije Universiteit Amsterdam; Giovanni Vigna, 
UC Santa Barbara and VMware; Christopher Kruegel, UC 
Santa Barbara; Thorsten Holz and Ali Abbasi, Ruhr-Universität 
Bochum

- https://www.usenix.org/system/files/sec22-scharnowski.pdf



Table of Contents

- Fuzzing
- Problems with fuzzing embedded systems
- Fuzzware
- Discussion



Background: Fuzzing

- Coverage-guided random testing
- Fuzzing needs

- Coverage instrumentation
- Input mutator
- Crash oracle

- Fuzzer tries to select inputs that will explore as much of the 
program as possible

- Intuition is that we are more likely to find bugs if we explore 
more of the program

- Fuzzing has been very successful at finding bugs and is now 
a standard technique

- Examples of fuzzers: AFL, libfuzzer



Background: Embedded Systems

- Small, specialized computer systems
- Smart home devices, industrial logic controllers, avionics 

systems, car engine controllers, medical devices, etc.
- Usually safety-critical



Background: Symbolic Execution

- “Concrete execution”: executing a program with concrete 
inputs

- Symbolic execution: makes the inputs symbolic values
- Track symbolic expressions program variables/state
- Look at all possible paths



Problem Setting

- We are given the firmware for an embedded system
- We know the CPU architecture
- We don’t know enough about the peripherals to create a 

peripheral models for a full-system emulation
- We want to fuzz the firmware and find bugs



An Idea

- Emulating embedded systems is hard due to handling 
peripheral MMIO accesses

- We also don’t have a good notion of “input” to send fuzzer 
testcases to

- Use fuzzer input as MMIO access values! 



Input Overhead

- All bits in an MMIO read value might not be important
- Amount of “information” in an MMIO value might be less than 

the full read size



Dealing with input overhead

- Use symbolic execution to figure out the “important” MMIO 
values (corresponding to code paths)

- Create a model of the peripheral access
- Use fuzzer input to select one of these “important” values
- Improved coverage



Fuzzware Design



Discussion

- Is the “input overhead” idea applicable to fuzz software other 
than embedded firmware?

- If we had source code for the firmware we were fuzzing, could 
we do better than the approach in this paper?

- Can we use the ideas in this paper to do more than just 
fuzzing?

- Do you have any ideas to make this better?
- Do you see any problems with this approach?


