
Active Directory II
FA2025 • 2025-10-21

Ronan Boyarski

Purple Team

sigpwny{2_hops_forward_1_hop_backward}
ctf.sigpwny.com

- Minor Corrections
- More Kerberos Abuse

- Double Hop Problem
- Unconstrained delegation
- Constrained delegation
- Resource-based constrained delegation
- S4U2self, S4U2proxy, altservice
- LDAP & SMB signing
- RBCD abuse via MAQ + ADIDNS relay

- DACL exploitation
- GenericAll, GenericRight, AllExtendedRights

- Cross-DC attacks
- RaiseChild
- Inter-Forest trust attacks

Overview

- Every time I said "sign" in Kerberos, I meant "encrypt"
- Kerberos logins will only cache a TGS, not an NTLM hash

- My past experience meant I was mistaking a service logging in with NTLM
as a service logging in with Kerberos

- This means you cannot do a pass-the-hash attack against a kerberos login,
which makes sense

- You can still harvest the TGS with Rubeus.exe triage
- KRBTGT password reset allegedly works… sometimes

- 24-ish hour propagation time
- Sometimes breaks stuff, sometimes doesn't, appears to depend on

encryption type
- Requires being very careful to not break DC replication
- https://github.com/microsoftarchive/New-KrbtgtKeys.ps1

Mistakes from Last Time

https://github.com/microsoftarchive/New-KrbtgtKeys.ps1

Even More Kerberos

Double Hop Problem
- What do we do when we

need to access a service,
but cannot directly
request a TGS?

- For example, let's say
service A (a webserver)
needs to talk to service B
(its database), and do
access control checks

Unconstrained Delegation
- Allows a user or machine

to act on behalf of
another user to another
service

- KDC includes a copy of
the user's TGT inside
the TGS

- When the user accesses
the Web Server, the
server extracts the TGT
from the TGS and
caches it in memory

Unconstrained Delegation

Unconstrained Delegation to DA
- Recall that we can force

computers to
authenticate to other
computers due to bugs

- If we own a host that can
do unconstrained
delegation, we can steal
incoming TGTs

- TGT forwarding lets us
take DC TGT (DC$ acct)

- Request a TGS to
CIFS/DC, then
secretsdump or psexec

Double Hop Problem, Attempt 2
- How can we solve this

problem with principle of
least privilege?

- It's clearly too much to
be able to impersonate
anyone, anywhere (TGT
forwarding)

Constrained Delegation
- No more TGT forwarding
- Allows it to request a

TGS for another user
using the Service's TGT

- So, it lets us become any
user on a specific
service to a specific
host

- What's wrong with this?

Constrained Delegation

Altservice
- All service tickets for the same machine, whether they are for

CIFS, TIME, HOST, etc., are encrypted with the same key
(derived from machine account password)
- So, SPN does not factor into ticket validation

- The service part of the service principal name (SPN) is not
encrypted in a TGS

- What if we request a ticket for something harmless, like TIME
on the DC, then overwrite that field with CIFS?
- It will be accepted!

- Microsoft confirmed this is working as intended
- So, if we have constrained delegation onto something like

TIME on a box, we can use this trick to get a CIFS ticket and
pwn it

Constrained Delegation Abuse
- Still better than

unconstrained delegation
- However, if we

compromise the trusted
computer, we can
compromise whatever
it's trusted to delegate to
with this

nxc smb b.hack.me -u 'A$' -p 'A_PASSWORD'
–delegate Administrator –lsa –sam

http://b.hack.me

- This is required to do the constrained delegation attack
- There are two Service 4 User extensions

- S4U2Self: Service for User to Self
- Service A obtains a TGS to itself on behalf of a user

- S4U2Proxy: Service for User to Proxy
- Service A obtains a TGS on behalf of a user to Service B

- Working by design, but there's a neat quirk
- The service is allowed to request S4U2Self for any domain users,

without their consent.
- If we compromise a machine account/service (say via auth relay), we

can do S4U2Self to obtain a TGS to itself on behalf of local admin
- This means that any time we get a machine account TGT, NTLM

hash, or cleartext password, we can own that machine via
impersonating a local admin using S4U2Self

S4U Extensions

Resource Based Constrained Delegation
- Other two delegation types

require DA
(SeEnableDelegationPrivilege)
to set up
- RBCD requires write DACL

access on the computer object
- They have the front service

delegate to the back
- What if we reverse the order?

- msDS-AllowedToActOnBehalfO
fOtherIdentity has B trust A
instead of giving A more powers

The MAQ Attack
- RBCD attack prerequisites:

- Own a principal with an SPN
- Have a computer on which you can write

AllowedToActOnBehalfOfOtherIdentity
- Machine Account Quota: Every domain

user can add up to ten machine
accounts to the domain by default

- Steps:
- Create Machine Account (evilhost$)
- Auth coercion against TARGET$
- Relay TARGET$ to DC to write

AllowedToAct attribute
- Perform RBCD where evilhost$ can

control the target

The MAQ Attack - hack.lu

sudo ntlmrelayx.py -t ldaps://10.244.0.10 --delegate-access -smb2support
[*] Servers started, waiting for connections
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Connection from 10.244.0.11 controlled, attacking target
ldaps://10.244.0.10
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Authenticating against ldaps://10.244.0.10 as HACK/SRV02$ SUCCEED
[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] All targets processed!
[*] HTTPD(80): Connection from 10.244.0.11 controlled, but there are no more
targets left!
[*] Attempting to create computer in: CN=Computers,DC=hack,DC=lu
[*] Adding new computer with username: MIWTKCEZ$ and password: ;JxK241bpcD>2T1
result: OK
[*] Delegation rights modified succesfully!
[*] MIWTKCEZ$ can now impersonate users on SRV02$ via S4U2Proxy

python3 PetitPotam.py -u ta_bort.mig -p LjtLNg37LdcZin73
srv02UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA@80/test 10.244.0.11

The MAQ Attack - hack.lu

sudo ntlmrelayx.py -t ldaps://10.244.0.10 --delegate-access -smb2support
[*] Servers started, waiting for connections
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Connection from 10.244.0.11 controlled, attacking target
ldaps://10.244.0.10
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Authenticating against ldaps://10.244.0.10 as HACK/SRV02$ SUCCEED
[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] All targets processed!
[*] HTTPD(80): Connection from 10.244.0.11 controlled, but there are no more
targets left!
[*] Attempting to create computer in: CN=Computers,DC=hack,DC=lu
[*] Adding new computer with username: MIWTKCEZ$ and password: ;JxK241bpcD>2T1
result: OK
[*] Delegation rights modified succesfully!
[*] MIWTKCEZ$ can now impersonate users on SRV02$ via S4U2Proxy

python3 PetitPotam.py -u ta_bort.mig -p LjtLNg37LdcZin73
srv02UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA@80/test 10.244.0.11

What's this about?

LDAP & SMB Signing
- SMB signing ensures the integrity of SMB by requiring a

Message Integrity Code (MIC)
- An NTLM relay attacker cannot create a valid SMB signature for a

session they didn't establish
- LDAP signing prevents an unauthenticated attacker from

relaying NTLM to perform LDAP modify operations like writing
to RBCD
- LDAP signing is off by default
- MAQ is 10 by default

- So if SMB signing is on, and LDAP signing is off, how can I do
a relay that uses as much unsigned material as possible?

WebClient & WebDav
- WebClient is a legacy service that lets you auth with NTLM to

HTTP endpoints like attacker.server@80/test
- That's an NTLM auth to an unsigned target
- We can also write to AD DNS records to add new hosts as an

unprivileged user
- What happens if I write to a DNS record to have an entry that

points to my machine, then coerce a WebDAV auth to it?
- Then I can get an NTLM hash over an unsigned channel and relay it
- Coercing a computer object lets us write to its RBCD attribute,

enabling us to take it over

The MAQ Attack - Review

sudo ntlmrelayx.py -t ldaps://10.244.0.10 --delegate-access -smb2support
[*] Servers started, waiting for connections
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Connection from 10.244.0.11 controlled, attacking target
ldaps://10.244.0.10
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Authenticating against ldaps://10.244.0.10 as HACK/SRV02$ SUCCEED
[*] Enumerating relayed user's privileges. This may take a while on large domains
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] HTTPD(80): Client requested path: /test/pipe/srvsvc
[*] All targets processed!
[*] HTTPD(80): Connection from 10.244.0.11 controlled, but there are no more
targets left!
[*] Attempting to create computer in: CN=Computers,DC=hack,DC=lu
[*] Adding new computer with username: MIWTKCEZ$ and password: ;JxK241bpcD>2T1
result: OK
[*] Delegation rights modified succesfully!
[*] MIWTKCEZ$ can now impersonate users on SRV02$ via S4U2Proxy

python3 PetitPotam.py -u ta_bort.mig -p LjtLNg37LdcZin73
srv02UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA@80/test 10.244.0.11

Coerce WebDAV target at
ADIDNS entry which points
to me

NTLM over HTTP as
SRV02$

LDAP auth as SRV02$

Privileged write to enable RBCD

MAQ abuse to add SPN

DACL Exploitation

DACL Attacks
- DACLs are just AD SDDLs
- There will be certain

permissions that can be used to
escalate privileges in a domain,
just like on a host

- SpecterOps has a list of all
known dangerous DACL
configurations here

- There are many of them, and
these can be mapped using
BloodHound

https://bloodhound.specterops.io/resources/edges/overview

Example DACL: GenericAll
- Say that User A has GenericAll privileges over User B
- Then, User A can write to pretty much anything related to User

B in LDAP
- What could you do to exploit this?

Example DACL: GenericAll
- Say that User A has GenericAll privileges over User B
- Then, User A can write to pretty much anything related to User

B in LDAP
- What could you do to exploit this?

- If you have GenericAll on a user, you can reset their password
- If you have GenericAll on a group, you can modify its membership
- If you have GenericAll on a computer, you can do RBCD on it

Example DACL: GenericWrite
- This is like a more limited version of GenericAll that lets us

modify privileged attributes
- If ADCS is enabled (will be covered in AD III), you can write to

the msds-KeyCredentialLink to add a new authentication
method (PKINIT private key)
- This is the only known abuse case for GenericWrite on a user

- GenericWrite on a group allows adding yourself or another
owned principal to the group

- GenericWrite over a computer lets you do an RBCD attack

Example DACL: ReadLAPSPassword
- This is a privileged read
- If it's enabled, some computers will have the Local

Administrator Password Solution
- If you have ReadLAPSPassword against a computer, you can

read the ms-Mcs-AdmPwd field to get the plaintext LAPS
password, giving you admin access to it

Example DACL: AllExtendedRights
- This lets you reset user passwords
- What happens if you have it against a computer?

- I recently discovered that it lets you reset the machine account
password (this isn't documented anywhere I've seen)

- We can then do a trivial S4U2Self to pwn it
- If you have this on a domain, you can dcsync it (think

secretsdump)

Cross-DC Attacks

Domain Trusts
- A trust relationship lets users in one domain authenticate and

access resources in another domain
- This works via referrals
- When a user requests access to a resource outside of their

current domain, their KDC returns a referral pointing to the
target KDC (think a child requesting a resource from a parent)

- The user's TGT is encrypted using an inter-realm trust key
(not the local krbtgt), this is called an inter-realm TGT

- The foreign domain decrypts the ticket, recovers the TGT,
then does access checks

Domain Trusts
- 4 Trust Types

- Can be one-way or two-way
- Can be transitive or non-transitive

- A one-way trust lets principals in the trusted domain to
access resources in the trusting domain, but not the other
way around

- A two-way trust is just two one-way trusts

Domain Trusts
- One-way trusts can be labelled as Inbound or Outbound

relative to perspective
- If Domain A trusts Domain B, Domain A is the trusting domain and

Domain B is the trusted domain
- So, Domain A has a one-way outbound trust
- Domain B would consider this to be a one-way inbound trust

- Transitivity is just whether trust can be chained
- Consider a scenario where Domain A trusts Domain B, and Domain

B trusts Domain C - does A also trust C?
- Now consider if C is owned by someone totally different from A…

Parent/Child Trusts
- When a child domain is added, it automatically creates a

transitive two-way trust with its parent
- If we have domain admin on the child, we can get domain

admin on the parent using a TGT with an attribute called SID
history (practically this is done via golden ticket)

"SID History was designed to support migration scenarios,
where a user would be moved from one domain to another. To
preserve access to resources in the "old" domain, the user's
previous SID would be added to the SID History of their new
account. When creating such a ticket, the SID of a privileged
group (EAs, DAs, etc) in the parent domain can be added that
will grant access to all resources in the parent." - CRTO course

One-Way Inbound
- If the trust is inbound from our perspective, then principals in

our domain can be granted access to resources in the foreign
domain

- There are many cases where admins in the current domain
will have admin privileges on the foreign domain

- To hop the trust, you need to identify a foreign group with
privileges that overlaps with a current group on your domain
- It's common to see cross-domain group memberships

- Request a TGT for the target user, then request a referral
ticket from the current domain to the target domain

- Finally, use the resulting ticket to request TGS's on the target
domain

One-Way Outbound
- This is where we trust someone else but not vice versa
- We can however get domain user privileges on the remote

domain by exploiting the shared credential for the trust
- Both domains in the trust relationship store a shared

password in a Trusted Domain Object
- This key material can be dumped from domain controller memory
- Last I checked, there is no credential guard on domain controllers
- It is also possible to pull the TDO by GUID using dcsync

- This password rotates every 30 days by default

Next Meetings
2025-10-28 • Next Tuesday
- Active Directory III
- Asymmetric Cryptography, MSSQL, Smart Cards, cross-protocol

attacks, and SCCM

sigpwny{2_hops_forward_1_hop_backward}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

