
Windows Forensics
FA2025 • 2025-10-16

Bryce Kurfman

Purple Team

Announcements
- CCDC registration is about to be sent

Have you indicated your interest in CCDC Invitationals?
- Be on the lookout for a GOOGLE FORM link in #purple-announcements
- Questions? DM your Purple leads!
- I’ll collect responses thru TUESDAY 10/21

- CyberForce
- Expect communication about this tomorrow, we’ll schedule 1 meeting in

advance to discuss expectations as we still await further instructions for
pre-competition deliverables

sigpwny{wtf_is_a_registry}
ctf.sigpwny.com

Overview
- Windows Event Viewer
- Windows Registry:

- Keys, Hives, & Transaction Logs
- NTFS Artifacts:

- $MFT, $UsnJrnl, & $I30, Windows Search Database
- Processes and Child Processes
- Execution Activities

- Logs, Prefetch, SRUM, BAM, AmCache.hve, etc.
- Linking User Actions

- Object Access Logging, LNK Files, & Shellbags
- Evidence Collection

- Memory Acquisition w/ WinPmem
- Triaging w/ KAPE

- Example: Hunting for Scheduled Task Persistence
- Active Directory GPOs

Windows Registry

Windows Registry
- The Windows Registry is a

central, hierarchical
database that stores low-level
settings and configurations

- The information stored here
persists across reboots and
shutdowns

- To access the registry, hit Win
+ R and type “Regedit”

- More info here

https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc781906(v=ws.10)

Registry Keys and Values
- The registry is structured on

keys and values:
- A key can contain subkeys

and/or values
- Values are the smallest

representation and store data
and configurations
- ie. the path of a program, that

program’s version, other relevant
information

- Can be any number of data types

The Five Registry Subtrees
- Subtrees are the root of the registry, and do not

contain data but instead keys, subkeys, and entries
where the data is stored

- The five registry subtrees are:
- HKEY_USERS (HKU): contains all the loaded user profiles
- HKEY_CURRENT_USER (HKCU): profile of the currently

logged-on user
- HKEY_CLASSES_ROOT (HKCR): configuration

information on the application used to open files
- HKEY_CURRENT_CONFIG (HKCC): hardware profile of

the system at startup
- HKEY_LOCAL_MACHINE (HKLM): configuration

information including hardware and software settings

Registry Hives
- Hives are logical groups of permanent registry keys stored as disk

files at C:\Windows\System32\Config and updated with each login
- SAM: Contains information stored about the Security Accounts Manager

(SAM) service, like local user accounts, passwords, creation and login
dates, etc..

- SECURITY: Contains the security information stored in the key
HKLM\SECURITY.

- SOFTWARE: Contains information stored in the key HKLM\SOFTWARE
about the computer's software configuration.

- SYSTEM: Contains information stored in the HKLM\SYSTEM about the
computer's system configuration, like event log policies.

- DEFAULT: Contains the default system information that is stored in the key
HKEY_USERS\.DEFAULT.

Additional Note about Hives
- There are a bunch of other hives on a

Windows system, such as these:
- Amcache.hve: used to track executed

binaries
- Ntuser.dat: sed to track user-specific

configs

Transaction Logs History
- Prior to Windows 8.1, Transaction Logs were like a cache for the

registry:
- If we change the computer hostname, Windows would write the new

hostname to the registry
- However, Windows used caching to group series of registry updates

together and writes them all in one shot (a given change is not immediate)
- These cached changes were stored in “transaction logs” on the disk

and are permanently written to the registry when:
- System idle
- Prior to a shutdown

- If a system failure occurs before new registry changes are written
from the log to the hive, they will be applied to the registry on the
next boot

https://cloud.google.com/blog/topics/threat-intelligence/digging-up-the-past-windows-registry-forensics-revisited/

Transaction Logs History Cont.
- Transaction logs were written in the same directory as their

corresponding registry hives and use the same file name as the hive
but with a .LOG1 and .LOG2 extension

- There could be pending updates at any time in transaction logs that
hadn’t been written to the registry
- It was important to inspect both transaction logs and actual registry hives to

spot recent unwritten changes
- Before registry hives get updated, they are called dirty hives

- Tools like Registry Explorer will detect dirty hives and allow you to write
pending changes to registry hives

https://ericzimmerman.github.io/#!index.md

NTFS Artifacts

NTFS
- New Technology File System (NTFS)

- Starting with Windows NT 3.1, NTFS was set as the default file system,
superseding the File Allocation Table (FAT) file system

- Is a journaling file system:
- It maintains a transactional log of all changes made on any NTFS volume (e.g. file and

folder creation, modification, deletion, etc.) which enables recovery from various
failures like power loss, system crash, and maintain integrity

- This means that we can find most file and folder activity information in the
NTFS file system journaling files such as $MFT, $UsnJrnl, $LogFile, and
$I30

$MFT (Master File Table)
- The Master File Table ($MFT) is a database that tracks all objects

(files and folders) current changes on a NTFS filesystem.
- Each object has its own record in the $MFT file, containing metadata about

that file, but entries can be reused when files are deleted
- $MFT is stored in the root of the NTFS partition (i.e., C:\), can acquire it with

a triager like KAPE or a full disk image
- Notable $MFT Fields

- In use: if unchecked, it’s a deleted object
- Has Ads: indicates if this object contains Alternate Data Streams (NTFS

feature that allows a file to store multiple different data types). This was
created to allow Windows to read the macOS HFS file system. Attackers
can use ADS to create additional stream to hide some data

https://learn.microsoft.com/en-us/windows/win32/fileio/master-file-table

Exploring the $MFT
- To explore the contents of $MFT, use r-studio (not the other one) or

MFTECmd which produces a CSV files that can be viewed using
Timeline Explorer

[Link]

https://www.r-studio.com/
https://github.com/EricZimmerman/MFTECmd
https://ericzimmerman.github.io/#!index.md
https://www.high54security.com/2023/12/forensics-part613-mft-analysis-with.html

$UsnJrnl
- $UsnJrnl (Update Sequence Number Journal) provides monitoring

of file and folder changes, but doesn’t hold data, it contains two
streams using ADS:
- It is located at $Extend\$USNJrnl under the drive root
- Typically stores data for a few days at a time
- $J

- Holds records of changes (creations, deletions, renamings, modifications, etc.) over a
file’s lifecycle (whereas the $MFT is better for current files)

- Check here for a list of what the different attributes mean
- Can be parsed with MFTECmd as well:

- MFTECmd.exe -f '<USNJRN_J$>' --csv <OUTPUTDIR_PATH>

https://www.cyberengage.org/post/ntfs-journaling-in-digital-forensics-logfile-usnjrnl-parsing-of-j-logfile-using-mftecmd-ex
https://learn.microsoft.com/en-us/windows/win32/fileio/file-attribute-constants?redirectedfrom=MSDN

$LogFile
- $LogFile stores details of low-level changes to provide more

resilience to the file system
- Located in the volume root
- MFTEcmd cannot parse $LogFile but NTFS Log Tracker can (it can also do

the other two in a single interface)
- One of its features is “Sus behaviours detection” which can identify attempts to wipe

away attack traces

https://sites.google.com/site/forensicnote/ntfs-log-tracker

$I30
- The NTFS Index Attributes ($I30) is used to track which files are in

which directories
- Each time folder content is updated, the index will be updated to reflect new

changes
- This may keep a track record of deleted files, even if securely wiped which

makes it great for proving existence of a particular file on the system, even
if it is now gone

- Use MFTEcmd or INDXRipper to parse $I30 file and produce a CSV file
ready for Timeline Explorer

https://github.com/harelsegev/INDXRipper'

Windows Search Database
- The Windows Search Database stores the index to speed up

searches and also helps recover deleted files
- Even when a file is deleted, it may persist in the “windows search database”

until it is updated
- The Search Index also records various user interactions interactions with

files and browsers
- Logs all URLs accessed via IE and MS Edge
- Tracks file openings on a per-user basis

- Is located at:
C:\ProgramData\Microsoft\Search\Data\Applications\Windows\Windows.edb

- In windows 11, it’s now Windows.db
- To parse and explore the contents of the database, the Search

Index Database Reporter (SIDR) is great

https://github.com/strozfriedberg/sidr
https://github.com/strozfriedberg/sidr

Processes & Child Processes

Windows Processes
- When a Windows application starts, several things occur in

memory:
- Windows loads the application executable into memory, which creates a

new process. This process acts as a container for the running memory and
holds information about the application state, as well as a process ID
- This process can also create threads that share the process’s memory and other

resources
- The security privilege that the process runs under is determined by

the context of the user who ran the application
- This can be used to enforce security restrictions and prevent the process

from doing certain things like establishing network connections

Windows Processes
- The parent process is the process that launched the current

process
- By seeing the relationship between parent-child, we can understand who is

spawning suspicious processes
- The process command line can also provide important information

about the application’s behavior and configuration
- ie. running svchost.exe without -k which allows the Service Control

Manager to track running services

Process Analysis
- Parent processes ID (PPID)
- Process ID (PID)
- Processes creation time and exit time
- Process file path
- Process command line arguments

- This is especially important since most adversaries will not try to hide
their commands. If a process is spawned with powershell -ep bypass
-e “...” it is most likely an attacker

- Process handle (e.g., associated files and registry keys)
- The user account the process runs under
- The security privilege the process runs under (e.g., high, medium,

low)

Execution Activities

Windows Services
- Configuration of Windows services is stored in the SYSTEM registry

hive at: C:\Windows\System32\config\SYSTEM under the
CurrentControlSet\Services (normally ControlSet001) key
- Creating malicious services is a common persistence mechanism
- Other variants of ControlSet keys in the system are used as backups. To

determine the active ControlSet, check to HKLM\SYSTEM\SELECT key and
see the loaded one under key value current

Important Service Event Log IDs
- System.evtx

- EID 7034
- Service crash event, possible due to process injection

- EID 7035
- OS sends a start/stop control signal to the service

- EID 7036
- Service actually starts/stops

- EID 7040
- Start type of the service is changed (e.g., auto, manual, automatic-delayed, disabled),

which may indicate persistence
- EID 7045

- Similar to 4697 but does not include info about the account that installed the service

Important Service Event Log IDs Cont.
- Security.evtx

- EID 4697
- service installation, contains executable path, service name, and account that installed

the service.
- Must enable “Security System Extension” audit policy using the command:

“AuditPol.exe /set /subcategory:”Security System Extension” /failure:enable
/success:enable”

PowerShell Script Block Logging
- PowerShell Script Block logging captures the full content of PS

scripts, giving a lot of insight into what attackers are doing
- This is stored in the Microsoft-Windows-PowerShell/Operational log file
- When Script Block Logging is enabled, Event ID 4104 captures:

- Complete script block text (the actual PowerShell code)
- Script block ID (for multi-part scripts)
- Path to script file (if executed from file)

- To activate, set
HKLM\SOFTWARE\Policies\Microsoft\Windows\PowerShell\ScriptB
lockLogging EnableScriptBlockLogging = 1

Autorun Applications
- An attacker can persist on a system by adding malware to a list of

programs that are automatically executed at system startup or when
a user logs in
- C:\Windows\system32\config\SOFTWARE:

Microsoft\Windows\CurrentVersion\Run
- C:\Windows\system32\config\SOFTWARE:

Microsoft\Windows\CurrentVersion\RunOnce
- C:\Windows\system32\config\SOFTWARE:

WOW6432Node\Microsoft\Windows\CurrentVersion\Run
- C:\Windows\system32\config\SOFTWARE:

WOW6432Node\Microsoft\Windows\CurrentVersion\RunOnce
- C:\Users<User>\ntuser.dat:

Software\Microsoft\Windows\CurrentVersion\Run
- C:\Users<User>\ntuser.dat:

Software\Microsoft\Windows\CurrentVersion\RunOnce

ShimCache (AppCompatCache)
- ShimCache, is a feature in designed to maintain compatibility for

applications running on newer operating systems
- When an executable file is run from any source, from local drive, removable

media, or network shares, an entry is made
- Executables that are merely viewed in the Windows Explorer GUI are also recorded,

even if they are not executed
- As such, ENTRIES DO NOT CONFIRM EXECUTION.

- ShimCache entries are stored in the registry at:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\AppCompatCache

- Use the AppCompatCache tool by Zimmerman to parse this data

https://ericzimmerman.github.io/#!index.md

AmCache.hve
- AmCache.hve is also known as the Windows Files Protection

Cache
- Contains a record of all the files that have been installed on a system,

including name, version, and location
- Located in C:\Windows\AppCompat\Programs, can be used to track the

history of installed programs and updates. Note that it is a binary file and
will need to use a tool like AmcacheParser

- One of the most useful fields is the UnassociatedFileEntries which contains
a list of all installed applications, identify any sus entries and look at their
SHA1 hashes to see if they’re known malicious
- Can also use this info to create a unique blacklist/whitelist

https://ericzimmerman.github.io/#!index.md

BAM Registry Key
- Background Activity Monitor is a services that controls the activity

of background applications
- Background applications can be any type of app that can continue to run

and perform tasks even when the user is to using/interacting with it,
includes non-GUIs

- Stored in SYSTEM hive under the key:
ControlSet001\Services\bam\State\UserSettings

- Provides info about the executable files that were run, including the full file
path, last execution date and time, other details

https://support.microsoft.com/en-us/windows/windows-background-apps-and-your-privacy-83f2de44-d2d9-2b29-4649-2afe0913360a#:~:text=In%20Windows,%20apps%20can%20continue,,%20and%20which%20won't.

Prefetch
- Prefetch is a feature of the Memory Manager that can improve the

performance of the Windows boot process and reduce the time it
takes for programs to start up
- It stores the files required by an application in the RAM as soon as the

application is launched.
- Stored in: C:\Windows\Prefetch directory with a .pf extension
- Use the Nirsoft WinPrefetchView tool to analyze those files

- Can extract details like the number of times a program was executed and the files
associated with the executables

https://www.nirsoft.net/utils/win_prefetch_view.html

SRUM
- The System Resource Usage Monitor (SRUM) tracks system

resource usage, like application resource usage, energy usage,
Windows push notifications, network connectivity, data usage, for a
period of 30 to 60 days.
- Enabled by default, can be viewed by the normal used in Taskmanager
- Can use SrumECmd to analyze the SRUM database located at

C:\Windows\System32\sru
- make sure to check first if SRUDB.dat needs to be repaired

- Face Time field in SRUM database refers to the amount of time the
application was actively being used by the user

https://ericzimmerman.github.io/#!index.md

Windows Event Viewer

Event Viewer
- Natively, Windows contains a built in Event Viewer application.
- Event Viewer works by logging significant events on a Windows system

- System errors
- Kernel power events
- Application events
- Security events

- EV tags these events with a unique Event ID classifier
- You filter for events where you wish to eventually establish a timeline of events.

This can be useful in determining evidence for IOCs (indicators of compromise)
- Popular event IDs of interest: Logon events (4624), scheduled tasks, admin

logon (4648), policy change, account management

Event Viewer Interface

Examples: App Error &
Logon Events (by Michael)

Query events on right
pane

Linking User Actions

Object Access Logging
- Windows does not log file/folder (object) access by default

- We will need to enable object auditing policy on the system using the
security policy through the local security policy or a Group Policy Object

- auditpol /set /category:”Object Access” /success:enable /failure:enable
- You can run this on your own machines but make sure to configure auditing on the

specific objects you want, because logging everything is quite intensive

- Handle ID
- UID assigned to each object
- Can use it to correlate all actions on the object.

Key Object Access Event IDs
- Security.evtx

- EID 4656
- access attempt to an object is made (success or fail)

- EID 4660
- object is deleted

- EID 4663
- access attempt (EID 4656) is successful

- EID 4658
- accessing of the object ended

Shellbags
- Shellbags represent a log of all folders a user viewed on the system,

including external drives.
- Using shellbags, can determine what folders any user viewed and what the

contents were, even if it doesn’t exist anymore
- Shellbags registry keys are stored in:

- NTUSER.DAT\Software\Microsoft\Windows\Shell\
- NTUSER.DAT\Software\Microsoft\Windows\ShellNoRoam\
- USRCLASS.DAT\Local Settings\Software\Microsoft\Windows\Shell\
- USRCLASS.DAT\Local Settings\Software\Microsoft\Windows\ShellNoRoam\

- Use ShellbagsExplorer to parse the bags

https://ericzimmerman.github.io/#!index.md

LNK Files
- LNK files are Windows shortcuts to open a file or folder and hold:

- File attributes, the volume serial number, type of drive where the file resides,
volume label, file path

- Hostname, system MAC address
- LNK Files can be created automatically by the OS when a user

opens a file or manually, using the create shortcut option.
- The best way to capture LNK files is to capture a triage image for

*.LNK which will grab every LNK files in the selected path. Most
LNK files exist in the Desktop, Downloads, or Recent folders
- Once KAPE has been used to create a triage image, parse them use LECmd

https://download.ericzimmermanstools.com/net9/LECmd.zip

Evidence Collection

Memory Acquisition
- WinPmem is a physical memory acquisition tool that supports

Windows 7 through 10, both x86 and x64
- It needs to be run from a shell with administrator privileges

- The "mini" imagers can only produce images in RAW format,
whereas the "go" version has additional features like extracting
specific files from an already acquired memory image
- For the purposes of memory acquisition, running the mini versions is better

as they have a smaller footprint.
- To acquire a memory image, port the WinPmem binary to the target

machine and run the following command (make sure to switch up
the executable based on whether the system is 32 or 64 bit).
- F:\WinPmem> .\winpmem_mini_x64_rc2.exe mem_output.raw
- Make sure to save the output to external storage

https://github.com/Velocidex/WinPmem

Triage Imaging
- KAPE is an efficient and highly configurable triage program that will

target any device or storage location
- From the GUI version of KAPE, you can choose what targets (what artifacts

to collect) and the modules (additional parsing)
- Can also use the command line version, with combined target and modules

at once:
- kape.exe --tsource C: --tdest D:\Collection --target !SANS_Triage --module !EZParser

--mdest D:\Results

https://www.kroll.com/en/services/cyber/incident-response-recovery/kroll-artifact-parser-and-extractor-kape

Procmon
- Procmon (Sysinternals) is a real-time monitoring tool that captures

file system, registry, network, and process/thread activity at the
kernel level.
- Very useful for incident response and dynamic malware analysis

Hunting for Scheduled Task Persistence

Scheduled Tasks
- Scheduled tasks provide a

granular way to establish
persistence, allow tasks to be run
under certain conditions (e.g.
when a particular user logs in,
system reboots, other system
events, etc.) and attackers can
blend in with normal system
behavior

- schtasks.exe
- command line too with several flags

that manipulate scheduled tasks

/create used to set up new tasks

/delete removes tasks, can erase evidence

/run manually runs a scheduled task
immediately

/query enumerates existing scheduled tasks on
a system

/change modifies an existing task

/end stops a currently running task

Malicious Examples
- schtasks.exe /create /sc daily /tn “sus_task” /tr powershell.exe

-NoProfile -ExecutionPolicy Bypass -File
C:\Windows\Downloads\malware.ps1 /st 04:20
- sus_task is created to run a PowerShell script daily with execution policy

bypass to avoid script block logging
- schtasks.exe /create /sc onstart /tn “sus_task2” /tr “dundll32.exe

C:\Windows\Temp\beans.dll, evilbeans” /ru SYSTEM
- sus_task2 loads beans.dll and executes the evilbeans function with

SYSTEM privileges

EIDs for Scheduled Tasks
- Task Scheduler Operation Log

(Microsoft-Windows-TaskScheduler/Operational)
- 106: Scheduled Task Created
- 140: Scheduled Task Updated
- 141: Scheduled Task Deleted
- 200: Scheduled Task Executed
- 201: Scheduled Task Completed

- Windows Security Log
- 4698: Scheduled Task Created
- 4699: Scheduled Task Deleted
- 4700: Scheduled Task Enabled
- 4701: Scheduled Task Disabled
- 4702: Scheduled Task Updated

- Sysmon (Event ID 1) and Windows Event Logs (Event ID 4688)
- Tracks process creation, including when schtasks.exe is used

Hunting Process
- Run Queries to Find Scheduled Tasks

- Sysmon Query (EID 1)
- event.code: 1 AND process.name: “schtasks.exe”

- Windows Event Logs Query (EID 4688)
- event.code: 4688 AND process.name ”schtasks.exe”

- TaskScheduler Operational Log (EID 106)
- event.code: 106

- Security Log (EID 4698)
- event.code: 4698

- (These queries are from Elastic SIEM, practice converting these to work in
Event Viewer)

- Investigate anomalous tasks, looking for:
- Unusual task names

- Non-standard directories
- High-right binaries
- scheduled task running commands like powershell.exe, rundll32.exe, or regsvr32.exe

are red flags especially if they’re executing scripts or DLLs directly

Hunting Process Continued
- Comprehensive Query:

- event.code: 1 AND process.name: schtasks.exe AND
process.command_line: (*/create* OR */delete* OR rundll32 OR regsvr32 OR
powershell OR cmd)

- this command focuses on high-risk patterns
- Remember that we can also cross-reference other logs and artifacts

to build a more complete picture of what went down

Active Directory GPOs (investigative)

What is a Group Policy Object (GPO)
- On Active Directory networks where network resources and user

access is defined, one can set up rules in place enforceable by this
environment

- A GPO can be a simple as: “enforce password changes every X
days” or “Assign X [user] to Y [group] with Z [privileges]”

- As always, gpupdate /force
- Your changes go live when you do this

Group Policy Objects
- We’ll discuss this in greater detail for system administration and

system hardening
- This is relevant for the following reason: Asking ourselves what lack

of a policy enabled compromise or movement within an active
directory network

- Also ask yourself if certain users or groups have more power than
they should within the system and if the system is properly
segmented

- Remember Event IDs

Example GPO: Passwords

Next Meetings
2025-10-21 • This Tuesday
- Active Directory II
- Delegation, LAPS, DACLs, S4U, and more!
2025-10-23 • Next Thursday
- To be announced
2025-10-28 • Next Tuesday
- Active Directory III
- Asymmetric Cryptography, MSSQL, Smart Cards, cross-protocol
- attacks, and SCCM

sigpwny{wtf_is_a_registry}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

