
Active Directory I
FA2025 • 2025-10-14

Ronan Boyarski

Purple Team

sigpwny{Domain Expansion}
ctf.sigpwny.com

- Active Directory Overview
- Why does it exist
- How does it work
- Why it's a good target
- Domain Controllers

- Kerberos Protocol
- Kerberoasting & AS-REProasting

- NTLM & Net-NTLMv2
- Pass-the-hash revisited
- Responder & Hash Relaying

- Offensive Flow
- Recon
- Lateral movement
- Domain Dominance

Overview

Why & How

Why have AD?
- Think about the system of University of Illinois
- 3 campuses, in total 100k+ students, so 25k+ students every year
- They all need

- An email account
- Access to school computers (Windows and Linux)
- Everyone needs a different “view” of the computer
- Access to different locations

- UIUC has 35k+ computers alone

How do we manage them?

Why have AD?
- Built to centralize authentication, authorization, and user

management in enterprise Windows environments
- Introduced by Microsoft in 1999, built to merge LDAP (directory

access), Kerberos (authentication) and DNS (name resolution) into
one monolithic enterprise management solution

- LDAP is the Active Directory protocol (like HTTP is for the web)
- If we didn't have this, we would be connecting computers in an

ad-hoc fashion (decentralized)

Why have AD?
- Built to centralize authentication, authorization, and user

management in enterprise Windows environments
- Introduced by Microsoft in 1999, built to merge LDAP (directory

access), Kerberos (authentication) and DNS (name resolution) into
one monolithic enterprise management solution

- LDAP is the Active Directory protocol (like HTTP is for the web)
- If we didn't have this, we would be connecting computers in an

ad-hoc fashion (decentralized)
- Putting all of your trust in one place is dangerous…

What is Active Directory?
– Basically a system for a bunch of computers to interact with one

another in a work setting with configurable privileges and remote
access

– Machines will be joined to an Active Directory Domain (illinois.edu)
– Each domain will at least have a Domain Controller

– This is your centralized source of truth for every record in LDAP
– When you request something over LDAP / DNS / Kerberos, it goes here

– It's also possible to have parent/child domains and other Forests
– LDAP is set up like a tree data structure - each child domain requires a child

domain controller
– Crossing domains is not a security boundary but crossing Forests is

What is Active Directory?
– Active Directory is very permissive by default and changes some

default settings to allow additional remote access
– This is by design. We can focus on targeting features of Active

Directory and attacking misconfigurations to abuse trust
relationships rather than traditional vulnerabilities

– You can log in to other domain-joined computers using NTLM
(remember Pass-the-Hash from last time!) as well as Kerberos

Toy Domain Example

– The key service that runs AD is "Active Directory Domain Services"
– The domain controller is the server for this
– This stores information about domain users and computers, as well as their

access rights
– This is contacted whenever a user logs into a machine
– All of the user credentials are usually stored on the Domain Controller in a

database called NTDS.dit
– AD manages your ability to do things to certain objects, e.g. create

a user, remote log in to a computer, manage a service
– The security check for this is SDDLs, everyone's favorite!
– Each user and group will have a SID that the domain recognizes

– Owning the domain controller means owning the target domain,
effectively forever

How does AD work?

Why target Active Directory?
– Something like >95% of the Fortune 500 use Active Directory
– Permissive by default and extremely difficult to configure securely
– Tons of niche or poorly documented features that are often

misconfigured (ADCS, SCCM)
– You likely don't need ANY vulnerabilities to get domain admin,

meaning you can chain a phish or data breach with features to
achieve complete compromise

– A domain compromise is game over for defenders and will almost
guarantee you access to your objective

– If you can hack this one piece of software, you can hack 95% of
companies & organizations

Kerberos
Guardian of the Domain

Kerberos
– Kerberos does authentication differently than NTLM

– Goal was to provide mutual authentication between clients and services
without transmitting passwords over the network

– Proves identity via cryptographic keys derived from passwords instead
– Functions similarly to a zero-knowledge proof where the client proves

knowledge of a secret (their password) without revealing the secret to the
verifier

– You will have tickets that let you do stuff to things
– Surprisingly good mnemonic to remember Kerberos versus NTLM

Kerberos
- The KDC knows all

passwords
- AS-REQ: Client sends

username and realm to the
server, and optionally a
pre-auth to proof their
identity

Kerberos
- The KDC knows all

passwords
- AS-REQ: Client sends

username and realm to the
server, and optionally a
pre-auth to proof their
identity

- AS-REP: Server then sends
a ticket (TGT) that is
encrypted with server’s
hash, and a session key
that the client can decrypt

Kerberos
- This provides mutual(?)

authentication between the
client and server

- The client now has a ticket
(TGT), that can be used to
request service access
(TGS)

- Since TGT is
service-independence, TGT
= NTLM hash in terms of
power

Kerberos
- With TGT, the client now

asks the server for a candy
because it’s halloween a
specific ticket to access the
service

- TGS-REQ: the client sends
the previous TGT and
pre-authentication data to
prove its identity

Side note: TGT is like a TGS to
kerberos itself - thus it is
encrypted with the kerberos
service hash

Kerberos
- With TGT, the client now

asks the server for a candy
because it’s halloween a
specific ticket to access the
service

- TGS-REQ: the client sends
the previous TGT and
pre-authentication data to
prove its identity

- TGS-REP: the server sends
a TGS that is encrypted
with the service’s hash, as
well as a session key that
the client can decrypt

Kerberos
- Client now presents TGS

and its own session key to
service. TGS contains many
client information and the
session key.

Kerberos
- Client now presents TGS

and its own session key to
service. TGS contains many
client information and the
session key.

- Service decrypts the TGS,
reads the client name and
privileges, and then grants
or denies access.

Kerberos
- Client now presents TGS

and its own session key to
service. TGS contains many
client information and the
session key.

- Service decrypts the TGS,
reads the client name and
privileges, and then grants
or denies access.

- Can you find any
problems with this flow?

Kerberos Points of Failure: TGS
- Working as normal, we can abuse where secrets come from

- Part of the TGS returned by the KDC is encrypted with a secret
derived from the password of the user account running that service

- We can request TGS's for services running under domain accounts
and crack them offline to recover their password! (Kerberoasting)

Kerberos Points of Failure: TGT
- For all things that require a TGT (Kerberos pre-auth), they all rely on

password of a special account (krbtgt)!
- If I were able to obtain the Kerberos account hash, then I could

forge TGTs and therefore TGSs that give me access to anything
- This requires a domain controller compromise, but if you can do it,

you now own everything in the domain (called a Golden Ticket)

Kerberos Points of Failure: Pre-Auth
- Remember when I said “optionally a pre-auth to proof their identity”?
- What if we don't require the TGT?

- If a user or service does NOT require the TGT, then anyone can
request an AS-REP for that user, which uses their password to encrypt
some secret data, which again we can crack offline

- This technique is called AS-REP roasting

IDK what an AS-REP looks like

NTLM
"I roll all my own crypto" - Bill Gates, probably

NTLM Authentication
- NTLM authentication functions

as a zero knowledge proof
where the secret is the
password hash

- The auth mechanism is
challenge / response

- Key point is that the hash is
the authentication material,
not the password

- Stealing the hash allows
authentication

Hash Theft
- AD user hashes are in LSASS process memory

- This is generally not possible to access if Credential Guard is enabled
- Different threat model - an AD user could have access to other boxes!

- Before Windows 11, all you needed to do was get SYSTEM, dump
LSASS process memory, and get hashes
beacon> mimikatz !sekurlsa::logonpasswords

Authentication Id : 0 ; 579458 (00000000:0008d782)
Session : Batch from 0
User Name : jking
Domain : DEV
Logon Server : DC-2
Logon Time : 8/31/2022 11:49:48 AM
SID : S-1-5-21-569305411-121244042-2357301523-1105

msv :
 [00000003] Primary
 * Username: jking
 * Domain : DEV
 * NTLM : 59fc0f884922b4ce376051134c71e22c
 * SHA1 : 74fa9854d529092b92e0d9ebef7ce3d065027f45

The Pass-the-Hash attack
- Suppose we have compromised a user's NTLM hash, but not their

password
- Since NTLM is like a proof, we can prove to anyone else that we are

the user in question by presenting a permutation of their hash
- So, we can obtain persistent access as any user whose hash we

have obtained
- The usual flow for this would be to compromise a box, dump

hashes, and log into everything we can with the new credentials
- You could rinse-repeat this however many degrees of separation it would

take to become Domain Admin
- Hash theft on Windows 11 requires a kernel and hypervisor exploit,

or to just lie in wait by backdooring LSASS

Pass-the-Hash Example Scenario

Credential Guard

Practical Uses
- Mimikatz

- Does a variety of things to access confidential information
- The most signatured piece of malware in existence
- Can steal everything stored in LSASS & registry
- Actual EXE dropped on-target
- Built in to meterpreter as an extension (kiwi)

Practical Uses
- Impacket-Secretsdump

- Steals as much as possible while executing no agent (network only)
- Does not access LSASS but accesses everything in registry

c c c

c

c
c c c

Net-NTLMv2
- For designated remote logins, there's Net-NTLMv2
- Net-NTLMv2 is NOT NTLM!
- Net-NTLMv2 cannot log in to the computer that sent the hash,

but it can log in to anywhere else
- We can attempt to crack this to recover the plaintext password
- There are some things we can do to get Net-NTLMv2 hashes over a network

- If we can trick someone into click on a .lnk or similar, that can log them into
our SMB server

- When you access an SMB server in windows, you will automatically log in
via Net-NTLMv2

- So, a common phish would be to host shortcut files that point to a
legitimate file hosting on an attacker's SMB server

Net-NTLMv2
- We can also try to MITM Net-NTLMv2 instead of phishing

- You can use a tool called Responder, which will leverage (among many
other techniques) Link Local Multicast Name Resolution to say that your
attacker share corresponds to certain hostnames

- They then visit it and you get their Net-NTLMv2 hash
- Using responder in poisoning mode on a public network is

super illegal (and very effective 😉)

Authentication Coercion
- We do not need to MITM or phish if the target is vulnerable to

authentication coercion
- Many of these bugs still exist
- There are a number of authentication coercion "features" like the

infamous Printer Bug, which, under certain circumstances, will
force the target machine to authenticate to an
attacker-controlled host
- For the Printer Bug, the Print Spooler must be running on the target

- So, there are some circumstances where we can disclose a
Net-NTLMv2 hash at will (google PetitPotam, Printer Bug)

- Can we use any of these bugs (or combine them) to compromise
the sender machine?

Hash Relay Attack
- Recall that everyone else

respects the Net-NTLM hash,
so we can just be a man in the
middle and bounce the hash
back and forth

- Any time we can force a
Net-NTLMv2 login in an AD
environment (auth coercion,
.lnk file, xp_dirtree,
responder), we can pull this
trick

Attacking Active Directory

Domain Recon
- Like NetSec and WebSec, we need to recon our target before we

do anything
- For example, it is trivial to detect Kerberoasting via Honeypots

- We want to do manual recon to figure out the lay of the land and avoid
active defense and deception measures

- Use this information to do selective, targeted attacks
- Like PrivEsc, we can do either manual or fully automated

enumeration - full auto has poor stealth but some amazing tooling
- We want to look up users, computers, groups, and privileged

relationships
- A common tool for this would be SharpView

SharpView Cheat Sheet
Command Description

Get-Domain Returns information about the current domain or the domain specified with -Domain

Get-DomainController Returns information about the domain controller for the current or specified domain

Get-ForestDomain Returns all domains for the current or specified forest

Get-DomainPolicyData Returns the default domain policy, which can reveal things like the password policy

Get-DomainUser Returns all users in the domain

Get-DomainComputer Returns all computers in the domain

Get-DomainOU Search for all Organizational Units or specific ones

Get-DomainGroup Returns all groups on the domain

Get-DomainGroupMember Returns all members of a given group on the domain

Get-DomainGPO Returns all GPO objects on the domain

Get-DomainGPOLocalGroup Returns all GPOs that modify local group membership through restricted groups or group policy
preferences.

Get-DomainGPOUserLocalGroupMapping This enumerates the machines where a specific domain user / group is a member of a specific local
group. This can be used to cross reference to find administrative privileges.

Get-DomainTrust Returns all domain trusts for the current or specified domain

BloodHound
- Keeping users and relationships in your head is very difficult
- It is substantially more difficult when there are thousands of them
- What if we map out all people and computers and their

relationships, then run Dijkstra's algorithm to speedrun Domain
Admin?
- Auto ingest data with SharpHound or Bloodhound-Python

BloodHound

Lateral Movement
- Let's say we have a credential onto some machine (TGT / NTLM)
- How do I turn that into Remote Code Execution?
- There are many techniques, since we can essentially arbitrarily read

and write files via authenticated SMB
- Write a file over SMB -> start a service over SMB (PSEXEC)
- Use WMI's Win32_Process class to run commands (WMIEXEC)

- A favorite of APT29!
- Modify a service to point to cmd.exe and pipe stdout (SMBEXEC)
- Utilize SCM manipulation for fileless lateral movement (SCSHELL)

- A favorite of mine, defeats CrowdStrike Falcon & MDE with ease
- Check impacket / github to run these via command line

Practical Kerberos Attacks
- There are many great tools to do this, but the standard is Rubeus
- Kerberoast with rubeus.exe kerberoast
- Asreproast with rubeus.exe asreproast
- Create a golden ticket with rubeus.exe golden /ldap
/user:targetuser /aes256:<KRBTGT AES256 hash>

- We can do Overpass the Hash, which is where we use an NTLM
hash to get a Kerberos ticket

- rubeus.exe asktgt /user:targetuser /ntlm:theirntlmhash
/nowrap

- We can use ptt (pass the ticket) to paste in a ticket and use it
in-memory

Network Detections
- Kerberoasting will generate a 4769 event, which is normal for

requesting TGS
- However, a skilled defender could create a honeypot and monitor for 4769

events, so if stealth is a priority, enumerate first, and kerberoast targets
one-by-one

- Tools like Rubeus will automatically kerberoast every SPN. Very bad!
- AS-REP roasting will generate a 4768 event with an RC4 (!!!)

encryption type and a preauth type of zero
- There are some instances where RC4 is acceptable, but you generally want

to be using AES256 whenever appropriate (mismatching encryption types
stick out from normal activity)

OPSEC Considerations
– Rubeus will make a request with randomly generated domain info

if it is not specified. It is trivial to identify ticket requests that go out
to something like AqMvbnZ.local

– If your process shouldn't be making Kerberos requests (and you
have Rubeus injected into it), you will generate an event for
"Kerberos activity from an anomalous process". If you instead
use Mimikatz, you will touch LSASS, which is even worse.

Domain Dominance
– Scenario: you've compromised a Domain Admin account and are

now ready to own all the things
– First step: use your credentials to dump the Domain Controller's

NTDS.dit remotely
– There are many ways of doing this, including Mimikatz, NetExec,

impacket-secretsdump
– If you have a domain admin account, disabling all associated security

software will be a walk in the park (if you can write malware, that is)
– Next, take the KRBTGT NTLM hash and use it to forge a Golden

Ticket
– We can set the golden ticket expiration time to be 10 years or so

Golden Tickets
– It's what it sounds like - a magical skeleton key that lets you log into

anywhere in the domain with all of the privileges, and, by default, it
works forever (KRBTGT password is not rotated)

– Once generated, just pass-the-ticket with Rubeus or Impacket
– Make sure to specify the Domain SID (use SharpView etc.)
Rubeus.exe golden /aes256:51d7…4e7e /user:nlamb /domain:dev.cyberbotic.io
/sid:S-1-5-21-569305411-121244042-2357301523 /nowrap

Rubeus.exe createnetonly /program:C:\Windows\System32\cmd.exe /domain:DEV
/username:nlamb /password:FakePass /ticket:doIFLz[...snip...]MuaW8

Domain Dominance
– This is just the tip of the iceberg, it only gets worse than this
– Often times, acquiring domain admin means that recovering the

domain for the defense will require a full domain rebuild, and you
will have power over everything in the domain

– Getting domain admin is usually the last step before you can start
actually acting on your objectives

– Try to avoid noisy techniques like creating new domain admins
unless it is absolutely necessary

Review
– This is only the most basic of AD attacks

– The more complex the system becomes, the more vulnerable it becomes
– Future topics: Delegation, DACL abuse, S4U, ADCS, MSSQL, GPO, SCCM

– Don't forget to chain this with other Windows vulnerabilities
– While you're learning, lean heavily on BloodHound, but also do

manual as well so you can see what manual query corresponds to
what relationship in BloodHound
– Stealthy red teamers don't get to use BloodHound much because it makes

a ton of LDAP queries
– There are tons of AD practice resources out there!

Next Meetings
2025-10-16 • This Thursday
- Detecting Windows Attacks
- Learn to do forensics on Native Windows Hosts & Kerberos
2025-10-21 • Next Tuesday
- Active Directory II
- Delegation, LAPS, DACLs, S4U, and more!
2025-10-28 • Next Next Tuesday
- Active Directory III
- Asymmetric Cryptography, MSSQL, Smart Cards, cross-protocol

attacks, and SCCM

sigpwny{Domain Expansion}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

