
Firewalls, Web Defense,
Containerization

FA2025 • 2025-09-25

Suchit Bapatla, Krishnan Shankar, Michael Khalaf

Purple Team

Announcements
- CyberForce 2025: how many of you would like to opt in as a

member for a possible 2nd team?

- If so, contact Michael immediately.

- Send me:
- Name, .edu email, non .edu email, phone number, year in school, major,

minor (if applicable), shirt size, dietary restrictions

Suchit Bapatla

- Helper
- CS MCS
- I did Mock Trial in HS

Krishnan Shankar

- SIGPwny Helper
- Computer Engineering ‘28
- Fun fact: I love planespotting

sigpwny{fiya_wall_bl0cked_ya}
ctf.sigpwny.com

What is a Firewall

- Monitors incoming and
outgoing network traffic to
look for any suspicious
activities

- Proxy firewalls operate on
layer 7

- Next-gen firewalls operate
on levels 3 and 7 with
heuristic analysis

What is a Firewall
- When asking the question, “how does a blue teamer defend against malicious

traffic in a live setting” there is one reliable option for live detection

- Firewalls are the technical utility to achieve this

- They are locks on doors between (hopefully) segmented networks
(in many cases, VLANs)

- They are both GUI and command line
accessible

- Capable of inspection of packets before
forwarding them to a LAN system (maybe a
gateway) prior to a dedicated recipient
client LAN Firewall Diagram

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2Fllustration-of-basic-firewall_fig7_305336208&psig=AOvVaw1AnVd5WfltDN3v5JyS9m0g&ust=1758919806828000&source=images&cd=vfe&opi=89978449&ved=0CBkQjhxqFwoTCLC3lYTl9I8DFQAAAAAdAAAAABAE

How does it work?
- Generally speaking, a firewall implemented within a network is

responsible for enforcement of access to other portions of a
network

- Prioritize rules at the top for those traffic types you will have more
frequently over a network

- Firewalls process rules from top to bottom
- Implicitly firewalls are set to deny any-any, must remember to

validate this
- Rules are written into the interface
- Firewalls can have multiple interfaces, just like a router

Firewall Rules
- Source and Destination Addresses
- Ports
- Protocol
- Action
- Direction

- Rules help monitoring and filtering of packets both ingress and egress traffic

Linux Firewall
- Netfilter-based

- iptables: Provides various functionalities to control network traffic
- nftables: A successor to the “iptables” utility, with enhanced packet filtering

and NAT capabilities
- firewalld: Has predefined rule sets, works a bit differently from the others

and comes with different pre-built network zone configurations.

- Uncomplicated Firewall (ufw)
- Enable UFW: sudo ufw enable
- Disable UFW: sudo ufw disable
- Reset UFW rules: sudo ufw reset
- Block a specific port: sudo ufw deny 80

firewalld

- Linux utilizes “daemons”, background processes

- firewalld, when enabled, can be configured in CLI

- /usr/lib/firewalld/zones/

- Firewall configuration allows for separating a network into zones,
provided a default zone, here is where you add interface zones and
more

Pfsense
- A free open-source firewall and

router software
- Based on FreeBSD
- Can prioritize different types of

traffic, top (high) to bottom (low)
- Walks through a step by step

process
- You care about WAN and LAN

for public facing and private
facing networks (your 192s,
172s, 10s, etc)

Slightly advanced attacks using NMAP
- nmap -sS -Pn -D 10.10.10.1,10.10.10.2,ME -F MACHINE_IP

- -sS is stealth mode -Pn continues even if no reply received, -F scans the
hundred most used ports

- -D uses decoys and is exceptionally useful as it alternates between provided
IP’s so there is less detection by a firewall due to multiple IP’s

- nmap -sS -Pn -D RND,RND,ME -F MACHINE_IP assigns random decoy IP
addresses

- Note: the amount of decoys you use increases the number of messages sent
- nmap -sS -Pn --proxies PROXY_URL -F MACHINE_IP

- This uses a proxy so the source IP is hidden

How to detect advanced attacks
- Firewalls won’t always cut it so more advanced Intrusion Detection

Systems are needed like Suricata, Security Onion, and Snort
- More on those tools later but they can be used to look for outliers in

data to find anomalies like port scans
- A layered defense will almost always lay more reliance on firewalls,

a severely underrated defense mechanism
- But when paired with SIEM and IDS tools + logging, you not only have a

way to respond to suspected malicious traffic, you can further analyze it
- The only drawback: your defense is as good as your ability to configure it

and account for traffic types you want or don’t want
- Rely on your default deny

Containerization

Scenario
- You want to run an untrusted application

- The last cybersecurity team was incompetent, and built/deployed a bunch
of insecure applications that you want to quickly patch up

- You’re told (e.g., by an inject) to deploy an application that they provide,
that you don’t have time to properly verify and fix security vulnerabilities for

- The application has to run as root, since it needs to use files in
/etc/my-application (this is okay)

- What if, as soon as the application starts, it also reads
/etc/shadow and immediately sends it to a remote server?
(this is not okay)

- Isolates applications into “containers” which are (for the most part)
independent

- Applications specifically devoted to the container are quick to run
- The idea is you build containers “once” and you run them anywhere
- We use this in security to quickly sandbox applications

- Providing us further isolation from a host’s operating system

Docker

Containers vs. Virtual Machines (VMs)
- Virtual Machines fully emulate hardware, software, and network

components otherwise found in a physical machine and are drawn
from a single physical server

- Containers run from the hardware level and borrow overhead from a
host’s operating system to present a lightweight option

Containers vs. VMs

Image Credit: Docker

https://www.docker.com/resources/what-container/

Docker Security
- Docker Security Tips
- One primary risk with running Docker containers is that the default

set of capabilities and mounts given to a container may provide
incomplete isolation, either independently, or when used in
combination with kernel vulnerabilities

- Docker will most likely “work” for a quick sandbox
- However, it’s far from perfect (when it comes to security)

https://docs.docker.com/engine/security/

Docker Security
- https://docs.docker.com/engine/security/
- Running containers (and applications) with Docker implies running

the Docker daemon. This daemon requires root privileges unless
you opt-in to Rootless mode…

- Docker allows you to share a directory between the Docker host
and a guest container; and it allows you to do so without limiting
the access rights of the container. This means that you can start a
container where the /host directory is the / directory on your host;
and the container can alter your host filesystem without any
restriction

https://docs.docker.com/engine/security/

Firejail
- A security-focused sandboxing tool to run untrusted applications
- Provides fine-grained control over what the application can do
- This is done through “profiles,” which are just files with some

custom syntax
- For example, my-app.profile

Firejail Profiles: Blacklist
blacklist /etc/shadow # No access to /etc/shadow

Firejail Profiles: Blacklist
blacklist /etc/shadow # No access to /etc/shadow

blacklist /etc/passwd

blacklist /etc/pam.d

blacklist /var/log

blacklist /bin/sh

blacklist /bin/bash

blacklist /bin/zsh

blacklist /usr/bin/sh

…

Firejail Profiles: Whitelist
blacklist /

whitelist /etc/my-application

Firejail Profiles: Whitelist
blacklist /

whitelist /etc/my-application

- This will create a new temporary in-memory filesystem (tmpfs)
- It will “bind mount” the whitelisted directory into the tmpfs

- This is similar to Docker’s bind mount

- Any edits are copied over to the host filesystem in real time

Firejail Profiles: Read-Only?
blacklist /

whitelist /etc/my-application

read-only /etc/my-application

Firejail Profiles: Read-Only?
blacklist /

whitelist /etc/my-application

read-only /etc/my-application

- This will still create a tmpfs and bind mount the directory
- However, the directory will be mounted read-only

Firejail Profiles: Read-Only?
blacklist /

whitelist /etc/my-application

read-only /etc/my-application

- This will still create a tmpfs and bind mount the directory
- However, the directory will be mounted read-only

What if the application needs to write to its directory, but we don’t
want it to affect the host filesystem?

Firejail Profiles: Private
blacklist /

private-etc my-application

- This will still create a tmpfs, but will not bind-mount the directory
- Instead, the directory will be “copied” to the tmpfs
- Any modifications to the tmpfs will be discarded at the end (so the

host filesystem isn’t affected at all)
- Very common in real-world firejail profiles

Firejail Profiles: Resource Limits
rlimit-as 4000000000 # Memory limit: 4GB

rlimit-fsize 31457280 # Maximum created file size: 30MB

rlimit-nofile 500 # Maximum number of open files

rlimit-nproc 10 # Maximum number of spawned processes

Firejail Profiles: Other/Miscellaneous
caps.drop all # Disable all “Linux Kernel” capabilities

nonewprivs # Disable use of SUID binaries (sudo)

nogroups # Disable groups (sudo, wheel, dialout, …)

noroot # The root account no longer exists (in sandbox)

x11 none # No control of the display manager (X11)

nodvd

nosound

notv

novideo

no3d

https://man7.org/linux/man-pages/man7/capabilities.7.html

Another Option: Bubblewrap
bwrap --ro-bind /usr /usr
 --dir /tmp
 --dir /var
 --symlink ../tmp var/tmp
 --proc /proc
 --dev /dev
 --ro-bind /etc/resolv.conf /etc/resolv.conf
 --symlink usr/lib /lib
 --symlink usr/lib64 /lib64
 --symlink usr/bin /bin
 --symlink usr/sbin /sbin
 --chdir /
 --unshare-all
 --share-net
 --die-with-parent
 my-application

Demonstration (plan)
Scripting IPTables and dropping a ip based on detection
Plan: find a malicious IP
5 minutes
→ IP blacklisting ←
3 minutes
→ Attempt communication after iptables DROP
2 minutes
→ Explain firewall’s role in live detection to reduce risk

Next Meetings
2025-09-30 • This Tuesday
- Linux & Linux Privilege Escalation
- Navigate Linux and learn how privileges escalate.
2025-10-02 • Next Thursday
- Linux & Linux Forensics
- Checking out investigative aspects of Linux
2025-10-07 • Next Tuesday
- Windows & Windows Privilege Escalation
- Navigate Windows and how privileges escalate

sigpwny{fiya_wall_bl0cked_ya}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

