g SIGPwny

SP2025 Week 06 ¢ 2025-03-11

Reverse Engineering
Antivirus for Evasion

Ronan Boyarski

Overview

- Brief review of theoretical model of AV & EDR

- (Case studies from Protections-Artifacts and Windows Defender
- Avoiding artifact detection
- Bypassing behavioral detection
- Avoiding process tree detection

oA

Antivirus Detection Methods

- Signature based detection

- Whether a file looks malicious statically, through sequences of bits or
the file hash

- Basic and easy to evade with polymorphism & encryption
- Behavioral detection

- The AV will run the file in a sandbox and see what it does, and judge
intelligently if the activity is malicious
- Reversing these sandboxes is basically impossible

- We can however use certain methods to tell if we're in a sandbox
and alter our execution depending on where we are
- We can even tell if we're in a debugger, and use that as an opportunity to troll

reverse engineers

N~

Antivirus Detection Methods

- Heuristic detection
- Uses big data & Al/ML to see how suspicious a file looks statically
- Not good against low-level malware (written in C & ASM), but highly
effective against C#
- Command Line
- Flags against known LOLBAS

- Process Tree
- If Microsoft Word is running PowerShell commands, something has
gone horribly wrong

RS

N~

Where We Left Off

- Use a polymorphic loader to get initial execution
- Problem: what happens once our malware is sitting in memory?
- (G2 frameworks will have sleep obfuscation, modules will not
- Problem: Even if we get execution, what if we do something that could
be flagged?
- For example, when are we able to read LSASS process memory
safely?
- How do we know which processes get to use Kerberos and get away
with it?

RS

N~

Reversing

oA

Static Signatures

- Need to extract the database
- Elastic signatures are here
- Windows Defender
requires dumping &
decompressing the

database
- Also found here

- Usually this will be in

YARA format

- Designed around pattern
matching and boolean
expressions

rule silent_banker : banker
{
meta:
description = "This is just an example"
threat_level = 3
in_the_wild = true

strings:
$a
$b
$c

{6A 40 68 00 30 00 00 6A 14 8D 91}
{8D 4D B@ 2B C1 83 C@ 27 99 6A 4E 59 F7 F9}
"UVODFRYSIHLNWPEJXQZAKCBGMT"

condition:
$a or $b or %c

RS

N~

https://github.com/elastic/protections-artifacts/
https://github.com/t-tani/defender2yara
https://github.com/VirusTotal/yara

Static Signatures

rule Windows_Hacktool_SharpUp_e5c87c9a {
meta:

- How would you go about

. . id = "e5c87c9%a-6b4d-49af-85d1-6bb60123c057"
m a k| n g th | S re‘t u rn fa | Se? fingerprint = "4c6e70b7ce3eb3fc05966at6c3847F4b7282059e05c089¢c20f39f226efhobf87"
creation_date = "2022-10-20"
last_modified = "2022-11-24"
threat_name = "Windows.Hacktool.SharpUp"
reference_sample = "45e92b991b3633b446473115f97366d9f35acd446d00cd4a05981a056660ad27"
severity = 100

arch_context = "x86"
scan_context = "file, memory"
license = "Elastic License v2"
os = "windows"

strings:

$guid = "FDD654F5-5C54-4D93-BF8E-FAF11B@OE3E9" ascii wide nocase

$str@ = "A\\W*([a-z] :\\\\.+?2(\\.exe|\\.bat|[\\.ps1|\\.vbs))\\W*" ascii wide
$strl = "A\\W*([a-z] :\\\\.+2(\\.exe|\\.d11[\\.sys))\\W*" ascii wide

$str2 = "SELECT * FROM win32_sexrvice WHERE Name LIKE '{@}'" ascii wide

$print_strl = "[!] Modifialbe scheduled tasks were not evaluated due to permissions." ascii wide
$print_str2 = "[+] Potenatially Hijackable DLL: {@}" ascii wide
$print_str3 = "Registry AutolLogon Found" ascii wide

condition:

$guid or (all of ($str*) and 1 of ($print_str*))

=

Static Signatures

rule Windows_Hacktool_SharpUp_e5c87c9a {
meta:

- How would you go about

id = "e5c87c9%a-6b4d-49af-85d1-6bb60123c@57"

making 'this re‘tu rn false? fingerprint = "4c6e70b7ce3eb3fc05966af6c3847F4b7282059e05c089c20f39F226efhobf87"

creation_date = "2022-10-20"

- Change the GU I D last_modified = "2022-11-24"

threat_name = "Windows.Hacktool.SharpUp"

I £ 1% le = "45e92b991b3633b446473115197366d9T35acd446d00cd4a®5981a056660ad27"
- Change the ordering of e acd446400c44059810566603

.exe|.bat, or similar e I
- Rename each print string

$guid = "FDD654F5-5C54-4D93-BF8E-FAF11B@OE3E9" ascii wide nocase

$str@ = "A\\W*([a-z] :\\\\.+?2(\\.exe|\\.bat|[\\.ps1|\\.vbs))\\W*" ascii wide
$strl = "A\\W*([a-z] :\\\\.+2(\\.exe|\\.d11[\\.sys))\\W*" ascii wide

$str2 = "SELECT * FROM win32_sexrvice WHERE Name LIKE '{@}'" ascii wide

$print_strl = "[!] Modifialbe scheduled tasks were not evaluated due to permissions." ascii wide
$print_str2 = "[+] Potenatially Hijackable DLL: {@}" ascii wide
$print_str3 = "Registry AutoLogon Found" ascii wide

condition:

$guid or (all of ($str*) and 1 of ($print_str*))

=

Static Signatures

- How would you go about
making this return false?
- Change the GUID
- Change the ordering of
.exe|.bat, or similar
- Rename each print string

- How would you test that
it worked specifically
from the change you
made?

rule Windows_Hacktool_SharpUp_e5c87c9a {
meta:

author = "Elastic Security"

id = "e5c87c9%a-6b4d-49af-85d1-6bb60123c@57"

fingerprint = "4c6e70b7ce3eb3fc05966af6c384714b7282059e05c089c20f39f226efhobf87"
creation_date = "2022-10-20"

last_modified = "2022-11-24"

threat_name = "Windows.Hacktool.SharpUp"

reference_sample = "45e92b991b3633b446473115f97366d9f35acd446d00cd4a05981a056660ad27"

severity = 100

arch_context = "x86"
scan_context = "file, memoxy"
license = "Elastic License v2"
os = "windows"

strings:

$guid "FDD654F5-5C54-4D93-BF8E-FAF11BOOE3E9" ascii wide nocase

$str@ = "A\\W*([a-z] :\\\\.+?2(\\.exe|\\.bat|[\\.ps1|\\.vbs))\\W*" ascii wide
$strl = "A\\W*([a-z] :\\\\.+2(\\.exe|\\.d11[\\.sys))\\W*" ascii wide

$str2 = "SELECT * FROM win32_service WHERE Name LIKE '{@}'" ascii wide

$print_strl = "[!] Modifialbe scheduled tasks were not evaluated due to permissions."

$print_str2 = "[+] Potenatially Hijackable DLL: {@}" ascii wide
$print_str3 = "Registry AutoLogon Found" ascii wide

condition:

$guid or (all of ($str*) and 1 of ($print_str*))

ascii wide

&

Detection Unit Testing - YARA

- We can test individual YARA detections with yarat4.exe
- Example Testlng for an injected SharpUp into a Havoc agent

... -r - e -r T —

PS C: \Users\Robert Banks\Desktop> .\yara6l.exe .\SharpUp.yar 7036
Windows_Hacktool_SharpUp_e5c87c9a 7036

- We can use this as a unit test to see if our malware works

oA

https://github.com/VirusTotal/yara/releases

Detection Unit Testing - YARA

- We can test individual YARA detections with yarat4.exe
- Example Testlng for an injected SharpUp into a Havoc agent

... -r - e -r T —

PS C: \Users\Robert Banks\Desktop> .\yara6l.exe .\SharpUp.yar 7036
Windows_Hacktool_SharpUp_e5c87c9a 7036

- We can use this as a unit test to see if our malware works

oA

https://github.com/VirusTotal/yara/releases

Detection Unit Testing - YARA

- We can test individual YARA detections with yarat4.exe
- Example Testlng for an injected SharpUp into a Havoc agent

... -r - e -r T —

PS C: \Users\Robert Banks\Desktop> .\yara6l.exe .\SharpUp.yar 7036
Windows_Hacktool_SharpUp_e5c87c9a 7036

- We can use this as a unit test to see if our malware works

oA

https://github.com/VirusTotal/yara/releases

Detection Unit Testing - YARA

- Change the GUID (in Assemblylnfo.cs)

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("feadfe84-a02a-uU553-b755-076f382869a8")]
I

- Shuffle one of the signatured regexes

@ ~\wx([a-z]:\\.+2(\.dll]\.exe|\.sys))\w:

- Change each print_str

Console.WriteLine("[!] Modifiable scheduled tasks were not evaluated due
Console.WriteLine("[+] Potentially Hijackable DLL: {@}\n" +

Console.WriteLine("Found Registry AutoLogon\r\n");

- Success!

PS C:\Users\Robert Banks\Desktop> .\yara64.exe .\SharpUp.yar 9540
PS C:\Users\Robert Banks\Desktop> _

oA

Detection Unit Testing - YARA

- We can automatically perform binary search with ThreatCheck

- Even though you should be searching for this stuff with reverse
engineering, if you're in a pinch this can work *sometimes*

- Goes well with Ghidra to go see if certain assembly is being flagged

PS C:\Tools\ThreatCheck> .\ThreatCheck.exe -f C:\Payloads\http_x6u.exe

[+] Target file size: 315392 bytes

[+] Analyzing...

[!] Identified end of bad bytes at offset 0x9E1l

00000000 C3 66 66 2E OF 1F 84 00 00 00 00 00 OF 1F 00 U8 Aff.Peccccces H
000000106 83 EC 28 U8 8B 65 C5 BF 064 06 C7 06 60 00 060 060 ?i(H?-Aa--Q -----
00000020 E8 8A 64 00 00 E8 75 FC FF FF 90 90 48 83 C4 28 é?'--éuﬁyy??H?ﬁ(
00000030 C3 66 66 2E OF 1F 84 00 06O 00 060 60 OF 1F 00 U8 /% = A DR H
000000U0 83 EC 28 E8 UF 19 00 60 48 85 CO OF 94 CO OF B6 ?71(€0---H?A-?A -1
00000050 CO F7 D8 U8 83 C4 28 C3 96 90 90 96 96 96 90 U8 A+@H?A(A?7?2772727H
00000060 8D 6D 09 00 60 66 E9 DU FF FF FF OF 1F 40 00 C3 [Tl ééyyy--@-i
00000070 96 960 90 90 90 96 960 96 90 960 96 96 96 90 96 u8 ?727?2227227277?H
000060080 FF E1 U8 63 05 C6 2A 606 ©0 85 CO 7E 26 83 3D BF VAHC - % - - 2A~&7=;
00000090 2A 00 00 60 7E 1D 48 8B 15 06 FD 64 06 48 89 14 kecomeH2.oy--H?-
000060A0 ©1 48 8B 15 ©3 FD 64 00 U8 63 65 A4 2A 00 66 U8 “H?:-y-+Hc-Hx--H
00000086 89 14 ©1 C3 41 54 55 57 56 53 48 83 EC 40 41 B9 ?--AATUWVSH?i@A*
000000CH o4y 660 00 00 U4C 63 E2 48 89 CF 4C 89 C5 31 C9 41 -« +-LcaH?IL?A1EA
00000000 B8 00 30 60 060 4C 89 E2 4C 89 E6 FF 15 52 FD 64 ,-9"L?§L?QY'R9°
00000OBES 00 48 89 C3 31 C6 39 C6 7E 15 u8 89 C2 83 E2 07 -H?A1A9%~-H?A?4-

000000F0e 8A 54 15 00 32 14 07 88 14 03 U8 FF CO EB E7 u8 ?T--2--7--HyAécH &

https://github.com/rasta-mouse/ThreatCheck

Bypassing Behavioral Detections

- Behavioral detections are quite robust
- Usually triggered by Kernel Callbacks and can introspect into ETW-TI
- ETW-TI: Event Tracing for Windows Threat-Intelligence
- A Kernel-Mode subscription for security-relevant events
- Can capture essential data about processes and threads, among
other things
- How can we get around a robust behavioral detection when we can't
tamper with the incoming data?
- Assume we do not have kernel code execution

RS

N~

Bypassing Behavioral Detections

- Behavioral detections are quite robust
- Usually triggered by Kernel Callbacks and can introspect into ETW-TI
- ETW-TI: Event Tracing for Windows Threat-Intelligence
- A Kernel-Mode subscription for security-relevant events
- Can capture essential data about processes and threads, among
other things
- How can we get around a robust behavioral detection when we can't
tamper with the incoming data?
- Assume we do not have kernel code execution
- Exclusions!

RS

N~

Bypassing Behavioral Detections

- Go take a look at this - a good detection for PPID spoofing

[Tule]
description = """
Identifies parent process spoofing used to thwart detection. Adversaries may spoof the parent process identifier (PPID)
of a new process to evade process-monitoring defenses or to elevate privileges.
id = "816ba7e7-519a-4f85-be2a-bacd6ccde57f"
license = "Elastic License v2"
name = "Parent Process PID Spoofing"
os_list = ["windows"]
reference = [
"https://blog.didierstevens.com/2017/03/20/",

"https://www.elastic.co/security-labs/elastic-security-labs-steps-through-the-x77-rootkit",

1

version = "1.0.46"

query = '''

sequence with maxspan=5m
[process where event.action == "start" and
process.parent.executable != null and

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/defense_evasion_parent_process_pid_spoofing.toml

Bypassing Behavioral Detections

- Take a moment to read the whole rule, look at line 120

not process.executable : ("?:\\Windows\\SysWOW64\\WerFault.exe", "?:\\Windows\\system32\\WerFault.exe")

- What does line 120 do?

il

oA

Bypassing Behavioral Detections

- Take a moment to read the whole rule, look at line 120

not process.executable : ("?:\\Windows\\SysWOW64\\WerFault.exe", "?:\\Windows\\system32\\WerFault.exe")
i

- What does line 120 do?

- If the current EXE is called WerFault, we return false, meaning the PPID
spoofing check is ignored

- Practically, this means that if we spawn and inject (aka fork and run) into
WerFault, we can PPID spoof into any process on the system, bypassing the
detection

- This is unlikely to get fixed in the near future
&S
N

Bypassing Process Trees

- Take a look at this rule for detecting unbacked LSASS dump (think
nanodump)
- Do any of these exclusions jump out at you as being exploitable?
- Remember, we can control our parent process, current process (spawn
and inject), and command line arguments

R

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/credential_access_lsass_access_attempt_from_unbacked_memory.toml

Bypassing Process Trees

- Take a look at this rule for detecting unbacked LSASS dump (think
nanodump)
- Do any of these exclusions jump out at you as being exploitable?
- Remember, we can control our parent process, current process (spawn
and inject), and command line arguments

not (process.executable : "?:\\Windows\\system32\\netstat.exe" and user.id : "S-1-5-18" and process.args : ("-a", "/a")) and

not (process.executable : "?:\\Windows\\system32\\tasklist.exe" and process.args : "/M") and .

- One tried and tested tactic is to inject into netstat to dump
LSASS

- If you look at the if statement, we need to be running as SYSTEM, and

supply a "-a" somewhere into the argument
LS
SN~

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/credential_access_lsass_access_attempt_from_unbacked_memory.toml

How to Inject into Netstat?

- If you're not super familiar with running a modern C2, you can actually do
this with no code!
- (C2's like Cobalt Strike and Havoc will have support for setting a spawnto
- When we process inject, what process do we create?

- Cobalt Strike has support for spoofing the command line args
- This isn't too hard to write on your own

- S0, usually you would run something like

- set spawnto C:\Windows\System32\netstat.exe
- argue -a

- Then, we would be able to dump LSASS

R

How did we get here?

oA

Case Study: Defender

- Defender comes with a handful of files, including two .vdm files

- mpasbase.vdm is the Anti-spyware database

- mpavbase.vdm is the Antivirus database

- mpasdlta.vdm is the AntiSpyware recent changes ("delta") database

- mpavdlta.vdm is the AntiVirus recent changes ("delta") database

- This repo goes over the reversing process of figuring out what these are

- Then, further research went into extracting individual signatures, which lets
us get at things like ASR rules https://github.com/hfirefOx/\WDEXxtract

- Finally, someone decided to convert many of them into YARA rules

- Note that none of this is exhaustive - Defender still has some signatures
that haven't been analyzed / extracted

&S

N~

https://github.com/commial/experiments/blob/master/windows-defender/VDM/README.md?plain=1
https://github.com/hfiref0x/WDExtract
https://github.com/t-tani/defender2yara/tree/yara-rules

