
Reverse Engineering
Antivirus for Evasion

SP2025 Week 06 • 2025-03-11

Ronan Boyarski

Overview

- Brief review of theoretical model of AV & EDR
- Case studies from Protections-Artifacts and Windows Defender

- Avoiding artifact detection
- Bypassing behavioral detection
- Avoiding process tree detection

Antivirus Detection Methods

- Signature based detection
- Whether a file looks malicious statically, through sequences of bits or

the file hash
- Basic and easy to evade with polymorphism & encryption

- Behavioral detection
- The AV will run the file in a sandbox and see what it does, and judge

intelligently if the activity is malicious
- Reversing these sandboxes is basically impossible
- We can however use certain methods to tell if we're in a sandbox

and alter our execution depending on where we are
- We can even tell if we're in a debugger, and use that as an opportunity to troll

reverse engineers

Antivirus Detection Methods

- Heuristic detection
- Uses big data & AI/ML to see how suspicious a file looks statically
- Not good against low-level malware (written in C & ASM), but highly

effective against C#
- Command Line

- Flags against known LOLBAS
- Process Tree

- If Microsoft Word is running PowerShell commands, something has
gone horribly wrong

Where We Left Off

- Use a polymorphic loader to get initial execution
- Problem: what happens once our malware is sitting in memory?

- C2 frameworks will have sleep obfuscation, modules will not
- Problem: Even if we get execution, what if we do something that could

be flagged?
- For example, when are we able to read LSASS process memory

safely?
- How do we know which processes get to use Kerberos and get away

with it?

Reversing

Static Signatures

- Need to extract the database
- Elastic signatures are here
- Windows Defender

requires dumping &
decompressing the
database
- Also found here

- Usually this will be in
YARA format
- Designed around pattern

matching and boolean
expressions

https://github.com/elastic/protections-artifacts/
https://github.com/t-tani/defender2yara
https://github.com/VirusTotal/yara

Static Signatures

- How would you go about
making this return false?

Static Signatures

- How would you go about
making this return false?
- Change the GUID
- Change the ordering of

.exe|.bat, or similar
- Rename each print string

Static Signatures

- How would you go about
making this return false?
- Change the GUID
- Change the ordering of

.exe|.bat, or similar
- Rename each print string

- How would you test that
it worked specifically
from the change you
made?

Detection Unit Testing - YARA

- We can test individual YARA detections with yara64.exe
- Example: Testing for an injected SharpUp into a Havoc agent

- We can use this as a unit test to see if our malware works

https://github.com/VirusTotal/yara/releases

Detection Unit Testing - YARA

- We can test individual YARA detections with yara64.exe
- Example: Testing for an injected SharpUp into a Havoc agent

- We can use this as a unit test to see if our malware works

https://github.com/VirusTotal/yara/releases

Detection Unit Testing - YARA

- We can test individual YARA detections with yara64.exe
- Example: Testing for an injected SharpUp into a Havoc agent

- We can use this as a unit test to see if our malware works

https://github.com/VirusTotal/yara/releases

Detection Unit Testing - YARA

- Change the GUID (in AssemblyInfo.cs)

- Shuffle one of the signatured regexes

- Change each print_str

- Success!

Detection Unit Testing - YARA

- We can automatically perform binary search with ThreatCheck
- Even though you should be searching for this stuff with reverse

engineering, if you're in a pinch this can work *sometimes*
- Goes well with Ghidra to go see if certain assembly is being flagged

https://github.com/rasta-mouse/ThreatCheck

Bypassing Behavioral Detections

- Behavioral detections are quite robust
- Usually triggered by Kernel Callbacks and can introspect into ETW-TI
- ETW-TI: Event Tracing for Windows Threat-Intelligence

- A Kernel-Mode subscription for security-relevant events
- Can capture essential data about processes and threads, among

other things
- How can we get around a robust behavioral detection when we can't

tamper with the incoming data?
- Assume we do not have kernel code execution

Bypassing Behavioral Detections

- Behavioral detections are quite robust
- Usually triggered by Kernel Callbacks and can introspect into ETW-TI
- ETW-TI: Event Tracing for Windows Threat-Intelligence

- A Kernel-Mode subscription for security-relevant events
- Can capture essential data about processes and threads, among

other things
- How can we get around a robust behavioral detection when we can't

tamper with the incoming data?
- Assume we do not have kernel code execution
- Exclusions!

Bypassing Behavioral Detections

- Go take a look at this - a good detection for PPID spoofing

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/defense_evasion_parent_process_pid_spoofing.toml

Bypassing Behavioral Detections

- Take a moment to read the whole rule, look at line 120

- What does line 120 do?

Bypassing Behavioral Detections

- Take a moment to read the whole rule, look at line 120

- What does line 120 do?
- If the current EXE is called WerFault, we return false, meaning the PPID
spoofing check is ignored

- Practically, this means that if we spawn and inject (aka fork and run) into
WerFault, we can PPID spoof into any process on the system, bypassing the
detection
- This is unlikely to get fixed in the near future

Bypassing Process Trees

- Take a look at this rule for detecting unbacked LSASS dump (think
nanodump)

- Do any of these exclusions jump out at you as being exploitable?
- Remember, we can control our parent process, current process (spawn

and inject), and command line arguments

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/credential_access_lsass_access_attempt_from_unbacked_memory.toml

Bypassing Process Trees

- Take a look at this rule for detecting unbacked LSASS dump (think
nanodump)

- Do any of these exclusions jump out at you as being exploitable?
- Remember, we can control our parent process, current process (spawn

and inject), and command line arguments

- One tried and tested tactic is to inject into netstat to dump

LSASS
- If you look at the if statement, we need to be running as SYSTEM, and

supply a "-a" somewhere into the argument

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/windows/credential_access_lsass_access_attempt_from_unbacked_memory.toml

How to Inject into Netstat?

- If you're not super familiar with running a modern C2, you can actually do
this with no code!

- C2's like Cobalt Strike and Havoc will have support for setting a spawnto
- When we process inject, what process do we create?
- Cobalt Strike has support for spoofing the command line args

- This isn't too hard to write on your own
- So, usually you would run something like

- set spawnto C:\Windows\System32\netstat.exe
- argue -a

- Then, we would be able to dump LSASS

How did we get here?

Case Study: Defender

- Defender comes with a handful of files, including two .vdm files
- mpasbase.vdm is the Anti-spyware database
- mpavbase.vdm is the Antivirus database
- mpasdlta.vdm is the AntiSpyware recent changes ("delta") database
- mpavdlta.vdm is the AntiVirus recent changes ("delta") database
- This repo goes over the reversing process of figuring out what these are
- Then, further research went into extracting individual signatures, which lets

us get at things like ASR rules https://github.com/hfiref0x/WDExtract
- Finally, someone decided to convert many of them into YARA rules
- Note that none of this is exhaustive - Defender still has some signatures

that haven't been analyzed / extracted

https://github.com/commial/experiments/blob/master/windows-defender/VDM/README.md?plain=1
https://github.com/hfiref0x/WDExtract
https://github.com/t-tani/defender2yara/tree/yara-rules

