
Attacking Hardened
Environments

FA2024 Week 12 • 2024-11-19

Ronan Boyarski

Table of Contents

– Application Whitelisting (AppLocker)
– PowerShell Constrained Language Mode
– Windows Defender Application Control
– Client-Side Execution & Attack Surface Reduction

Application Whitelisting

AppLocker

– Defines rules to allow what can run on a system
– NOT a security boundary

– Considered a defense-in-depth feature
– Designed to block unwanted software and some malware

– Appears to be more designed to stop low-tier threats
– Default AppLocker rules (example)

– Allow members of the local Administrators group to run everything
– Allow members of the Everyone group to run apps that are located

in C:\Windows
– Allow members of the Everyone group to run apps that are located

in the Program Files folder

Defeating AppLocker

– Put malware in C:\Windows\Tasks or C:\Windows\Temp
– Bypasses rule number 2 (see previous slide)

– Bypass with DLLs
– Default protection doesn't protect against running DLLs

– rundll32 sus.dll,main

– Bypass with third party scripting engine
– Check if something like Python is installed

– Execute shellcode w/LOLBAS
– Example for arbitrary C# execution w/msbuild.exe

https://github.com/3gstudent/msbuild-inline-task/blob/master/executes%20shellcode.xml

PowerShell
Constrained Language Mode

PowerShell CLM

– Language mode of powershell designed to only support
what's necessary for day-to-day tasks
– Restricts usage of WinAPI
– Not a security boundary

– Enumerate
– $ExecutionContext.SessionState.LanguageMode

– Designed as another defense-in-depth measure to be stacked
with things like AppLocker

Bypassing PowerShell CLM

– Reuse the msbuild bypass
– This lets us run arbitrary C#
– If needed, we can call PowerShell from C# by hosting a custom

runspace
– LOLBAS

– InstallUtil.exe /logfile= /LogToConsole=false /U
malware.dll

– Alternative: don't use powershell :)

Windows Defender
Application Control

Windows Defender Application Control

– Can be configured to block unknown applications in a very
robust manner
– Can check by file name, hash, path, signing status, and more

– IS considered a security boundary
– No known bypasses (bypasses are considered CVEs)
– Must be attacked by reversing & attacking the policy in place
– Base policies can be found at

C:\Windows\schemas\CodeIntegrity\ExamplePolicies,
with a .p7b file extension

– Alternatively can be read from GPO

Windows Defender Application Control

– Download the .p7b file and reverse it with CIPolicyParser.ps1
– Avoid denied LOLBAS
– Search for allow lists

– Wildcards are great
– Look for wildcarded writable folders
– Look for checking only the file name
– Check if signing your binary lets it pass

https://gist.github.com/mattifestation/92e545bf1ee5b68eeb71d254cec2f78e

Attack Surface Reduction

Attack Surface Reduction

– Feature of Windows Defender that blocks common methods
used for execution

– Example Rules:
– Block all Office Applications from creating child processes
– Block Win32 API calls from Office macros
– Block Office applications from injection code into other processes
– Block executable files from running unless they meet a prevalence,

age, or trusted list criterion
– Block unsigned processes that run from USB
– Block JavaScript or VBScript from launching executable content
– Block Process Creations from WMI (lateral movement!)

Attack Surface Reduction

– We can find enabled rules if we're on the device, but ASR
largely blocks methods of getting in, so I won't even go over it
here

– We need to reverse engineer ASR exclusions and make our
processes fit those
– We can use a script called wd-extract.py to find the exclusions on

our local machine
– We'll get a bunch of lua files which we can grep through to find the

matching rule

Attack Surface Reduction

– This is an example for spawning
processes from an Office document

– There are hundreds of path exclusions
– Look for one with a writable directory

(like %AppData%)
– So, if we need to, we can drop our

malicious EXE to a whitelisted path and
run it directly to get around this

– Regardless, getting around ASR is a
pain

Attack Surface Reduction - LSASS

– If configured to "Block Credential
Stealing from LSASS", you won't be
able to get a handle to LSASS with read
access

– The solution is to spawn and inject our
LSASS dumper into whitelisted process
that is allowed to get read access to
LSASS
– An easy one here is svchost.exe

Summary

– To combat defense in depth, we need to start practicing
offense in depth
– This is a huge departure from "run tools and pwn shit"

– Application Whitelisting (AppLocker)
– Evade through LOLBAS & writable directories

– PowerShell Constrained Language Mode
– Evade through LOLBAS

– Windows Defender Application Control
– Evade through exploiting weak policies & exclusions (see here)

– Attack Surface Reduction
– Evade through reverse engineering default exclusions

https://github.com/bohops/UltimateWDACBypassList

Next Meetings

2024-11-19 • This Thursday
- Running Networking Devices
- Next meeting is on 12/3 (Introduction to Offensive

Development)
- I will likely be late as I'm giving a talk for ENG 298 the hour before

