LS SIGPwny

N\

50D sP2026 o 2026-02-05

Pwn lll: ROP

Tyler Mercado

Announcements

- LA CTF 2026 tomorrow at 7:45 PM!

- Qur first CTF of the semester and one of the best of the entire year!
- We will meet in person in Siebel CS 2406

LS

ctf.sigpwny.com

sigpwny{r3turn_

srsi

: Bx887fbcfdfadb23 =

srdl : X0

$rip s OB TherAriTees - -«
$rs : Gx0

$ro : Gx0

Sl @ Gxe07fbcfadbcong -
$rit : Bx246

12 : Ox007fbcfdpas788 -
il : Bxd68

Srid : BxP07fbcf4bababe ~
irls @ 8xdes

seflags:

2 1lbc m4st3r}

—
=

0x8a6a500000086006
Ox5677fff110003d48 (*H="2)

0x900060120008000
x800860001bad2887
0x8008600060086000

[ZERO carry PARITY adjust sign trop INTERRUPT direction ov
dentiflication]
feni @x33 tns: Bx2b Sds: OxB0 $os: xBB $fs: BxGO Sgs: €xhoe

(A

Review

Bottom of memory
(0x0000000000000000)

Top of memory
(OXFFFFFFFFFFFFFFFF)

Memory Region

.text
(instructions)

.data
(initialized
globals)

.bss
(uninitialized
globals)

heap

stack
(runtime data)

0

Review: PWN |

- Buffers and variables are stored on the stack, at a fixed size,
contiguous in memory.

- Unsafe functions can write more data than the buffer can
store, leading to Buffer Overflow Vulnerabilities.

- We can control the program flow by overflowing the buffer

h1e) to overwrite the return address.

(local varia

Overflow

v

Local Variable

— Low Address

Modified Return Address

—— High Address @

N~

“ret2win”

void win() { // at 9x4011b3
// prints flag
}

int vuln() {
puts("Say Something!\n");
char buf[32];

gets(buf);
return 0;

}

int main() {
vuln();

}

buf[32]

Saved Base Pointer

Return Address

0

“ret2win”

void win() { // at 9x4011b3
// prints flag
}

int vuln() {
puts("Say Something!\n");
char buf[32];

gets(buf);
return 0;

}

int main() {
vuln();

}

buf = "AAAAAAAA..."

0x4141414141414141

Ox4011b3

0

“ret2shellcode”

int vuln() {
puts("Say Something!\n");
char buf[32];

gets(buf);
return 0;

}

int main() {
vuln();

}

buf[32]

Saved Base Pointer

Return Address

0

“ret2shellcode”

int vuln() {

}

puts("Say Something!\n");
char buf[32];

gets(buf);

return 0;

int main() {

}

vuln();

|

buf = Shellcode ("\x31\xc@\x50\...")

0x4141414141414141

Address of buf

d

/

/

vuln() now returns to the
shellcode we put on the stack

0

Mitigation

NX

- Stack is not executable
- WAX: Region of memory can’t be both
writable and executable 4

_ env) pwn checksec challenge
) St;i?zgggel)__le;)%' RW [*] '/root/ctf/sigpwny/pwn/libc-rop/challenge’
]] Arch: amdb4-64-1ittle
(o] (o]
Stack: Canary found
NX: NX enabled
PILE: PIE enabled

R

N~

Mitigation

NX

- Stack is not executable
- WAX: Region of memory can’t be both
writable and executable 4

_ env) pwn checksec challenge
) St;e)l((t:TCa(;]ccijel)_'leF?)F(). RW [*] '/root/ctf/sigpwny/pwn/1libc-rop/challenge’
' ' Arch: amdé4-64-1ittle
(o] (o]
Stack: Canary found
NX: NX enabled
PIE:; PIE enabled

How do we bypass this?

R

N~

Code Reuse!

- Return Oriented Programming (ROP)
- ldea: We can interpret arbitrary bytes in program data as instructions
- Chain small pieces of code together with the ret instruction
- (See https://langsec.ora/papers/Bratus.pdf for a history lesson)

- Gadgets!
- Little pieces of code that we chain together (ROP chain) to do what we want
- End with a ret instruction
- These are already in .text - don’t have to worry about NX!

A

https://langsec.org/papers/Bratus.pdf

ROP - High Level

AG_ﬂAu1 Execute a series of gadgets to
AN achieve:
Gadget 2
A=0 B=3
Gadget 3
B=A

0

ROP - High Level

Gadget 1
A=A+1

B

Gadget 2
Gadget 1
Gadget 1
Gadget 1
Gadget 3

0

ROP - Slightly Less High Level

Hint:
swap rax and
rbx

Hint:
rbx =0

Hint:
rex=0
rax = rax + 1

Hint:
rax = rax - rbx

Gadget 1
xchg rax, rbx

ret

Gadget 2
nop

Xor rbx, rbx
ret

Gadget 3
Xor rcx, rcx

add rax, 1
ret

Gadget 4
sub rax, rbx

nop
ret

Using a sequence of gadgets, can we
achieve:

rox = 3

0

ROP - Slightly Less High Level

Gadget 1
Hint: xchg rax, rbx Using a sequence of gadgets, can we
swap rax and ret .
achieve:

rbx

Gadget 2

Hint: nop rbx p— 3

rbx =0 Xor rbx, rbx

ret
| Gadget 3 Gadget 2 (set rbx to 0)
ng Xor rcx, rcx Gadget 1 (%)
rcx = adget 1 (set rax = rbx
rax = rax + 1 add rax, 1
ret Gadget 3 (rax = 1)
Gadget 3 (rax = 2)
Gadget 4
Hint: sub rax, rbx Gadget 3 (rax = 3)
rax = rax - rbx nop Gadget 1 (set rbx = rax)

ret

0

New Exploit

buf[32]

Saved Base Pointer

buf = "AAAAAAAA..."

Return Address

0x4141414141414141

GADGET 1 ADDR

GADGET 2 ADDR

GADGET 3 ADDR

0

Example

buf = "AAAAAAAA..."

"0x4141414141414141"

Addr of: pop rdi; ret;

0x12345678

Addr of: win()

void win(int a) {
if (a == 0x12345678) {
// print flag
}

}

rdi, rsi, rdx, rcx, r8, r9 - argument
registers for x86_64 (in that order)

- Useful for one of the ROP
challenges!

In 32 bit, arguments are on the stack
after the return address

pop rdi causes this to
go into the rdi register @Q
>

ROP in practice

- Usually, there's no win function, so we need to do something

else
- Most of the time, we'll try to pop a shell (run /bin/sh)

- Find and order gadgets to call execve("/bin/sh", NULL,
NULL) or system("/bin/sh™)
- Need gadgets to set up register(s)
- Need registers to call syscall

R

Finding and Ordering Gadgets

- Can do it yourself (highly recommended, it’s fun!)
- objdump -d -M intel myprogram | grep ret -B 5

- ROPGadget

- List gadgets: ./ROPGadget.py --binary chal
- Create ropchain: . /ROPGadget.py --ropchain --binary
chal

- Pwntools (rop.rop) and Pwndbg (Pwndbg ROP) can
help too!

- one gadget
- Gadget that pops a shell immediately

0

https://github.com/JonathanSalwan/ROPgadget
https://docs.pwntools.com/en/stable/rop/rop.html
https://browserpwndbg.readthedocs.io/en/docs/commands/elfinspection/rop/
https://github.com/david942j/one_gadget

Libc

- Libc = giant file full of standard library functions
- linked near the top of memory: ex7ff...

- The challenge binary usually doesn't have a lot of useful
gadgets... but libc does!

- Often, the goal is to leak a libc address, calculate the libc

base address, and then ROP with libc gadgets
- This can help: Libc Database

Unique gadgets found: 101496

R

https://libc.blukat.me/

ROP Mitigations

- PIE (Position Independent Executable)
- Randomizes binary base address: functions are at different
addresses every timel!

- ASLR (Address Space Layout Randomization)
- Like PIE - randomizes locations of memory regions (stack, heap, etc.)
- Libc location also gets randomized!

- Base addresses change, but offsets stay the same
- Only need to leak one binary address (or one libc address for libc)

R

Pwntools example

exe = ELF("./main™)
libc = ELF("./1ibc-2.27.s0")

libc_leak = # acquire the address of Libc 'func name' from binary (e.g.
puts)

libc.address = libc_leak - libc.symbols["func_name"] - offset

POP_RDI = (rop.find gadget(['pop rdi', 'ret']))[©] + libc.address

RET = (rop.find gadget(['ret']))[©] + libc.address

SYSTEM = libc.sym["system"]

payload += b'A"*8 # buffer

payload += p64(RET) + p64(POP_RDI) + p64(BIN SH) + p64(SYSTEM) # ROP chain

\ £

To make the stack aligned to 16 bytes

Further Reading

- Shadow stack: keep another read-only copy of the stack in a

hardware register and compare
- Merged into Linux 6.6 in 2023 (over 15 years after the first ROP

paper!)
- Sigreturn-oriented programming (SROP): Use a signal handler

to set reqgisters

R

https://lore.kernel.org/lkml/20230830234752.19858-1-dave.hansen@linux.intel.com/

Resources

pwntools - Essential for scripting your exploit
pwndbg - gdb but good

ROPGadget - find gadgets/generate ropchains
one _gadget - find one gadgets

Libc Database Search - find libc offsets

ROP Emporium - Beginner oriented practice

0

https://docs.pwntools.com/en/stable/
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md
https://github.com/JonathanSalwan/ROPgadget
https://github.com/david942j/one_gadget
https://libc.blukat.me/
https://ropemporium.com/guide.html

Next Meetings

2026-02-08 « This Sunday

- No meeting!
- Enjoy the Super Bow!!

2026-02-12 « Next Thursday

- Esolangs
- Learn several esoteric languages and how to reverse engineer
programs written in them!

R

ctf.sigpwny.com

sigpwny{r3turn_2 1llbc m4st3r}

Meeting content can be found at
sigpwny.com/meetings.

LS SIGPwny

N\

