
Cryptography III
SP2026 • 2025–02-01

Ahmad Alkhalawi

General



Announcements

– There were some major SIGPwny infra changes last Friday!
– Please let us know if any challenges or sites are no longer working.



sigpwny{5ub_5h1ft_4dd_r3p34t}
ctf.sigpwny.com



Symmetric Cryptography

- Symmetric Cryptography is a method where the same secret 
key is used for both encrypting plaintext and decrypting 
ciphertext

- To transport that key, we use an asymmetric algorithm like 
DHKE

- Symmetric algorithms are typically much faster



One-Time Pad
>>> plain = b"Test"

>>> key = bytes.fromhex("cafebabe")

>>> bytes([i ^ j for i, j in zip(key, plain)])
b'\x9e\x9b\xc9\xca'

- Achieves “perfect secrecy”! 🥳
- Requires a completely random bitstring the same length of 

your plaintext



Block Ciphers

- A deterministic encryption algorithm that operates on a plaintext 
of fixed length

- Typically, the plaintext is divided into “blocks” of 16 or 32 bytes 
instead of treated as a continuous stream of byte data

- An algorithm is used to transform each block into an enciphered 
block, and then the results are joined together to form a 
ciphertext



Block Ciphers
>>> plain = b"TestTest"

>>> key = bytes.fromhex("cafebabe")

>>> num_blocks = len(plain) // len(key)

>>> bytes([i ^ j for i, j in zip(key*num_blocks, plain)])
b'\x9e\x9b\xc9\xca\x9e\x9b\xc9\xca'

- One way to achieve this is to xor a fixed size key with each 
block

- But this is weak now



Diffusion and Confusion

- To give a description of what a secure block cipher looks like, 
the cryptographer Shannon introduced Diffusion and 
Confusion.

- Confusion is making the relation between the key and 
ciphertext as complicated as possible.

- Diffusion is spreading the influence of one plaintext symbol 
over many ciphertext symbols with the goal of hiding 
statistical properties of the plaintext. 

- The previous XOR cipher has low diffusion and confusion



AES

– Block cipher that operates on a fixed block length 
of 16 bytes (128 bits)

– There are a total of 3 different bit lengths for the 
keys: AES-128, AES-192, AES-256

– AES begins by splitting the key into round keys 
according the key schedule, representing each 
block as a 4x4 matrix, then performing the 
following operations:



AES

- ShiftRows shifts the rows of the current block by a certain 
offset amount, providing diffusion in the vertical direction.



AES

- MixColumns applies a matrix multiplication operation to each 
column of the current block, providing diffusion in the 
horizontal direction.



AES
- SubBytes uses a global substitution lookup table called the 

SBOX to substitute a set of bits in the current block, adding 
nonlinearity (confusion) to the encryption



AES

- AddRoundKey 
performs a bitwise 
XOR operation 
between the current 
block and a round key 
derived from the 
cipher's key schedule.



Cipher Modes

- Block ciphers like AES often have different modes of 
encryption governing how each block is encrypted: the 
algorithm itself is only good enough to encrypt one block of 
text, so we need to extend it to work on multiple blocks

- Example modes for AES: ECB, OFB, CTR, CBC, CFB



Cipher Modes - ECB



Cipher Modes - CBC



Why we need modes



Affine Transforms

- transformations upon a vector of the form Ax + b
- In the context of AES, this is represented by y = A·x ⊕ b 

- The transformation first mixes the bits linearly (via matrix A) 
and then shifts them (via vector b).

- Importantly, if A happens to be reversible, then it is possible 
to recover x from y: x = A-1(y⊕ b)

- Affine transformations are important as they allow efficient 
mixing

- However, being purely linear has its problems!!!



Linear Cryptanalysis

- Secure S-Boxes in block ciphers are designed to be resistant 
towards 2 kinds of cryptanalysis: linear and differential

- If an S-Box is linear, the output bitvector y of the substitution can be 
expressed as the bitwise XOR-sum of some linear combination of the input 
bitvector x

- Basically, there exist some vector b and some matrix in GF(2) A such that 
the output bitvector 

- y = A·x ⊕ b
- If this is the case, then we can possibly represent the AES/DES 

encryption as an affine transformation!!! 



Pseudorandomness

- We say a sequence of symbols is pseudorandom if it seems 
to look completely random yet has been created by a 
deterministic, completely repeatable process

- A PRG G : {0,1}n
 
→ {0,1}n+s is a mapping such that it is 

very hard for any polynomial-time “guesser” to guess the 
output of the PRG given the input string 



Stream Cipher

- A probabilistic encryption algorithm building on top of PRGs 
where the cryptographic key and algorithm are applied to 
each binary digit in an input (treated as a data stream)

- The key supplied as input into the PRG is known as the 
keystream

- General Example:
- Calculate keystream with some random IV: G(iv, k)
- Encrypt message (byte or bit level) m∈{0,1}n+s: c = (iv, G(iv, 

k) ⊕ m)
- Decrypt with m = G(k, iv) ⊕ c, discarding IV



Examples

- AES modes such as CTR, GCM, OFB, and CFB
- ChaCha20 : very popular used, low power stream cipher
- Rivest RC4: example of an insecure stream cipher, especially 

when you don’t discard beginning of keystream
- Chameleon, Fish, Helix
- many more



Bit Flip (OFB)

- Each block of plaintext is XORed with the previous block 
of ciphertext before being encrypted

- Thus, if an attacker modifies a bit in the ciphertext of one 
block, the corresponding bit in the decrypted plaintext of the 
next block will be flipped

- The alternative CFB mode will flip the bit in the same block like OFB, 
except it will also clobber the next block, making it easier to 
authenticate the decrypted message and detect the bit flip attack



Zerologon

Zerologon is a vulnerability discovered in 2020 in the 
cryptography of Microsoft's Netlogon process that allows an 
attack against Microsoft Active Directory domain controllers.



Zerologon

The attack is based on 
Microsoft choosing all 0s 
as the IV. This means 
there is a 1/256 chance of 
the server computing all 
0s from the cipher, which 
means you can predict 
what it will say and 
authenticate.



Next Meetings

2026-02-05 • This Thursday
- Java Rev
- Learn how to decompile and reverse engineer Java programs!
2026-02-08 • Next Sunday
- PWN III: ROP
- Learn how to bypass W^X protections with code reuse 

attacks!



sigpwny{5ub_5h1ft_4dd_r3p34t}
ctf.sigpwny.com

Meeting content can be found at 
sigpwny.com/meetings.


