éﬂg SIGPwny

EEE7D FA2025 o 2025-11-16

SIGPwny x SIGArch:
CPU Security

Presented by Swetha (SIGPwny) and Pratyay (SIGArch)

SIG

website discord

University of lllinois’ Premier Computer Architecture Club
We host weekly meetings Wednesdays from 5:00-6:00 pm in ECEB 3015.

Teaching topics including RTL design and simulation, SystemVerilog,
transactional memory, branch prediction techniques and cache coherence.

Meeting content can be found at
sigpwny.com/meetings.

é-g SIGPwny

Agenda

What is a CPU?

CPU optimization techniques

3 CPU vulnerabilities that exploit these optimizations

Hands-on experiment! (stay tuned for meeting flag)

0

What is a CPU?

e Fetch: The CPU retrieves instructions from
the computer's memory (RAM).
e Decode: It then decodes the instructions to

Central Processing Unit

understand what task it needs to perform.
e Execute: The CPU performs the required —

computation or logic using its internal
components, such as the Arithmetic/Logic
Unit (ALU) and registers.

e Memory & Writeback: The results are then
sent back to memory for storage or for use
by other components

Pipelining

e |Instruction execution is broken down into stages
o Fetch, Decode, Execute, Memory, Write-Back

e CPU works on multiple instructions simultaneously

e Starts next instruction as soon as previous one moves onto

the next stage
o Instruction A goes to Decode stage — Instruction B goes to Fetch
stage

e Reduces number of clock cycles required to run the same set
of instructions

0

Instruction execution in 5-stage pipeline
Execution
clock

O 3, @ & E

Instruction 1 IF | 1D f X EMEMJ WBI

Instruction 2 = D EX |MEM WB'
Instruction D | EX | MEM| WB'

nstruction4 IF | 1D | EX | MEM | WE

Instructions IF D | EX | MEM]| WB'

R

N~

Branch Prediction

PC (program counter) typically increments sequentially
Branch: PC “jumps” to a non-consecutive value

e Branching is based on conditions, but conditions take time to
evaluate — CPU “predicts” which branch will be taken based on
historical patterns, like branch history tables

e CPU speculatively executes instructions from predicted path

e Once branch condition is actually evaluated, the prediction is
validated (most CPUs have ~95% prediction accuracy) &%
=

N~

Vulnerability: Spectre

e Discovered in 2017, publicly disclosed in 2018

e EXxploits branch prediction to make CPU speculatively execute
attacker code paths

e Origin of name: “speculative execution”

e Official MITRE references: CVE-2017-5753 and CVE-2017-5715

e Paper: spectre.pdf @Cg
P >

https://spectreattack.com/spectre.pdf

How Spectre Works

Attacker repeatedly runs certain instructions to train the branch
predictor — triggers misprediction

During the misprediction, the CPU speculatively executes malicious
iInstructions, accessing forbidden memory

Though the speculative work gets discarded once the misprediction
Is detected, there are traces of the (secret) data in the CPU cache

Attackers can then obtain the secret data from the cache via side
channel attacks and ROP attacks %
£

N~

Example of Branch Misprediction

if (x < arrayl_size)
y = array2larrayl([x] x 4

] ;

9

Listing 1: Conditional Branch Example

e Repeatedly call this chunk of code with valid (within bounds) values of x —
trains branch predictor

e Flush the cache (important for after speculative execution)
e Then provide a malicious value of x (accessing secret memory)

e While the if-statement is being evaluated, the CPU speculatively executes
the array access — y value is in the cache

e Side-channel analysis on the cache — see which memory access is the
fastest — contains the secret data

0

Out-of-Order Execution

e CPU executes instructions in a different order than they appear in
the program

e Reduce performance penalties by eliminating false dependencies
between nearby instructions

R

OOOE Example

1. Load data from memory into register A takes 200 clock cycles
2. Add 5 to the value in register B takes 1 clock cycle

3. Multiply value in register C by 2 takes 3 clock cycles

4. Use value in register A for a calculation

How can we optimize the execution of these instructions?
Execute instructions #2 and #3 while #1 is happening, since there is no

actual dependency between them

R

Vulnerability: Meltdown

e Discovered in 2017, publicly disclosed in 2018

e Exploits out-of-order execution to read kernel memory from the user
space

e Primarily affected Intel CPUs
e Origin of name: “melts down” security boundaries

e Official MITRE reference: CVE-2017-5754

R

How Meltdown Works

e Attacker’s malicious instruction tries to read from kernel memory -
which is supposed to cause an exception

e Due to out-of-order execution, the CPU executes the memory
access before the permission check completes

e Once the permission check is complete, the work from the
out-of-order execution is discarded, but traces are still left in the
cache

e Paper: meltdown.pdf C%;K

https://meltdownattack.com/meltdown.pdf

Prefetching

e Prefetching is a computer architecture technique that predicts and
fetches data or instructions into the cache before they are
requested, aiming to reduce memory access latency and improve
performance

e Relies on principles like_spatial locality (data near each other in
memory is likely to be used next) and_temporal locality (recently
used data will be used again soon) to predict future needs

e Latency Hiding: This prefetch request runs in parallel with the
processor's other computations to prevent unnecessary wait time

or stalling.
&
>

https://www.google.com/search?client=ubuntu-sn&sca_esv=8bf17b38d04cf49d&channel=fs&q=spatial+locality&sa=X&ved=2ahUKEwjSusmxpuaQAxW4mIkEHU6eCBsQxccNegUInAEQAQ&mstk=AUtExfDljWbqoA7-P8jIChdRCj0J9k39u9o1MaTGnzAF3YRbIa7r1qwqwwet_l0chAca5cZMmJpqKFyFYMoEJqM8DHq6wm0AkCd682KzW8qULHMKF6tsUZra8iy-v1Pf5X5IUgc&csui=3
https://www.google.com/search?client=ubuntu-sn&sca_esv=8bf17b38d04cf49d&channel=fs&q=temporal+locality&sa=X&ved=2ahUKEwjSusmxpuaQAxW4mIkEHU6eCBsQxccNegUInAEQAg&mstk=AUtExfDljWbqoA7-P8jIChdRCj0J9k39u9o1MaTGnzAF3YRbIa7r1qwqwwet_l0chAca5cZMmJpqKFyFYMoEJqM8DHq6wm0AkCd682KzW8qULHMKF6tsUZra8iy-v1Pf5X5IUgc&csui=3

Vulnerability: GoFetch

The GoFetch attack is based on a CPU feature called data
memory-dependent prefetcher (DMP), which is present in the latest
Apple processors.

Reverse-engineered DMPs on Apple m-series CPUs and found that
the DMP gets data loaded from memory that "looks like" a pointer.

This explicitly violates a requirement of the constant-time
programming paradigm, which forbids mixing data and memory
access patterns.

Due to this being a hardware construct, it is hard do disable in
software without turning off the fetch

R

N~

Activity!

e Make an account on EDA Playground

e https://edaplayground.com/x/Adzk

0

Next Meetings

Meetings continue after fall break!
(No meeting this Thursday)

0

