
Game Hacking
FA2025 • 2025-11-06

Tyler Mercado

General



Announcements
- We are playing BuckeyeCTF 2025 hosted by OSU!

- Tomorrow (11/7) at 7:00pm (room TBD, likely Siebel 2406)
- Unlike most CTFs, Buckeye offers prizes to the top 3 undergraduate teams
- No graduate students are allowed to play
- Try hard and win that prize!



sigpwny{ju57_h00k_7h3_ch3ck5}
ctf.sigpwny.com



What is Game Hacking?
Game hacking is the practice of reverse engineering and modifying 
video game software to manipulate game behavior.
- Memory manipulation
- Code injection
- Reverse engineering
- Anti-cheat evasion



Windows PE vs. Linux ELF
- .rodata stores read-only constants
- .text stores executable code
- .data stores static and

 global variables



DOS MZ Header
- Legacy header from MS-DOS era
- Contains pointer to PE header location
- Includes MS-DOS stub program
- Required for backwards compatibility



PE Header
- Defines architectures (x86, 64),

entry point, and image base addresses
- Specifies number and locations of

sections (.text, .data, .rdata)
- Includes import/export table for

DLL functions
Why do we care?
It reveals memory layout, and imported
functions to hook. 
Base address matters because of ASLR!



Virtual Memory in Windows
- Each process has isolated 4GB 

address space (32-bit) or 16EB (64-bit)
- Stack and Heap differ from Linux layout
- Program Image (loaded executable)
- DLLs are shared libraries mapped 

into process space
- PEB/TEB contain process/thread metadata
- Kernel Land is OS memory, inaccessible

from user mode.



Patching
- Directly modifying executable

code/data in memory or on disk
- Memory patching changes

bytes at runtime
- Disk patches are permanent

modifications
- Common targets 

- NOP (0x90)
- JE -> JNE, JMP
- Constants (damage, health, …)



External Cheats
- ReadProcessMemory

- copies data from address range
- WriteProcessMemory

- writes buffer data to address range
- VirtualProtect

- sets memory permissions 
- Generally easier to make with tools

like Cheat Engine
- Harder to detect
- Less control



Internal Cheats
- Runs inside game processes
- Can call functions (spawn items, teleport, etc.)

- reinterpret_cast<void(*)(const char*)>(0xDEADBEEF)("Hello, 
World!");

- Can hook functions
- Can access memory through pointer

dereferencing 
- *reinterpret_cast<std::uint8_t*>(0xDEADBEEF);

- Requires more reversing
- We need to find function addresses

- Easier to detect
- Vulnerable to signature scans



Example with Roblox



Reversing Structs
- Analyze memory access patterns

- Track how pointers are dereferences e.g. *(data + 0xc), *(data + 8)
- Identify offsets and determine types

- Each offset reveals a struct member location
- We can access/modify game data directly via typed structs instead 

of raw pointers



Reversing Virtual Tables
- Windows adds RTTI metadata 

which disassemblers can parse
- RTTI reveals class names,

inheritance hierarchy, and vtable
structure

- Identify game objects (e.g. 
Player, Enemy, Weapon)

- Allows hooking virtual functions
- Find “Player” class -> locate

vtable -> hook TakeDamage()



DLL Injection
- Traditional DLL Injection

- Use CreateRemoteThread and LoadLibrary
- Windows handles loading and calling DllMain automatically

- Manual Mapping
- Manually allocate memory, copy DLL sections, fix imports/relocations
- More stealthy
- No entry in PEB

- GetModuleHandleA(nullptr);
- Returns the base address of the current process’s main module (with ASLR 

offset)
- BOOL WINAPI DllMain(HINSTANCE module, DWORD reason, 

LPVOID);
- DLL entry point; we will run our code in here



Hooking Functions
- Traditionally requires writing 

inline assembly
1. Patch first few bytes of function

to jmp to our code
2. Process function arguments
3. If we want, call the instructions

we replaced and jmp back to
function at the next instruction



Hooking Functions
- Modern libraries allow for JIT inline hooking.
- No inline assembly required
- Can be vulnerable to signature scans



Example with OBS: Creating Overlays



Bypassing Return Address Checks
- Checks for valid function return addresses (when it is pushed to the 

stack)
- When we call a function that is protected by a return address

checker, we need to either NOP/JMP the check branch or patch the 
function to return early



Bypassing Integrity Checks
- Memory checksums

- Anti-cheat calculates hash/CRC of code sections periodically
- If hash mismatches (code patched), trigger detection

- We can bypass these checks by hooking them.
- Use a debugger to look through threads and find the integrity checker
- Calculate the expected/stored hash before code patches
- Hook function to always receive valid hash

- What if there are integrity checkers that check each other?



Bypassing Signature Scans
- Scans memory for known

cheat signatures
- Checks running processes

file hashes against known
cheats

- Trivially, hook the checks
- Alternatively, obfuscate and pack

your code + shuffle structs and
constants



Modern Anti-cheats
- Ring 0 (Kernel Mode)

- Full system access (can scan all memory,
processes, drivers)

- Monitor hardware events, syscalls
and kernel callbacks

- Protection techniques
- Heavy code obfuscation
- Encrypt critical memory regions
- Signature scans

- Invasive
- Boot-level drivers
- Continuous system activity monitoring



Drivers
- Kernel drivers (Ring 0)
- Cheat drivers

- Read/write process memory
from kernel

- Hide processes, modules, and
registry keys (roootkit techniques)

- Disable anti-cheat callbacks
and kernel protections

- Requires valid code signing
certificate

- Vulnerable to behavioral analysis
and signature scans

- Must start before the anti-cheat driver



Kernel-based Virtual Machines
- Ring -1 (Hypervisor level)
- Hypervisor intercepts hardware

instructions
- Can read/modify guest memory

invisibly from outside the VM
- Run cheat on host and game in VM
- Anti-cheats check for VM artifacts,

(e.g. CPUID flags, timing consistency,
hypervisor presence)



System Management Mode
- Ring -2 (SMM)

- Most privileged x86 CPU mode, below
hypervisor and kernel

- Special CPU mode triggered by
System Management Interrupt (SMI)

- Has complete access to all physical
memory and hardware

- Operates in SMRAM
(System Management Ram)

- Can intercept USB traffic
- Full physical memory access regardless

of VBS/HVCI settings



System Management Mode
- Execution flow

- SMI triggered on USB event
- CPU switches to SMM, saves game memory

via physical addresses
- Modifies USB mouse data buffer

for aimbot
- CPU exits SMM, restores OS

- Anti-cheats can’t scan SMM memory
- Vulnerable to side-channel timing

attacks
- You need a BIOS programmer to flash

custom UEFI firmware to your motherboard



Direct Memory Access
- PCIe card plugged into second computer
- Reads physical memory over PCIe bus

without executing any code on target
system

- Decrypt and process memory on second
computer

- Vulnerable to PCIe device ID scans, VBS,
side-channel attacks, and hardware heuristic
detections

- Requires custom DMA firmware and FPGA
firmware development skills to make undetected



Example with Valorant
- We read and decrypt

player positions from
Vanguard

- We do some trigonometry
to calculate their position
on our screen

- We render the ESP
overlay on our monitor
through OBS hooking



AI Cheats
- Computer Vision aimbots

- Use capture card + AI model to detect
enemies and aim

- Typically use YOLO
- Sends calculated mouse movements

to target computer through
microcontroller

- Microcontroller acts as an HID
device

- Vulnerable to player statistic
heuristic detections and device
descriptor scanning



C#/Mono Game Cheats
- Managed code (IL bytecode, preserves type info)
- Decompilation with dotPeek recovers source-like C# code
- Direct IL patching or Mono.Cecil for assembly modification
- MonoInjector for runtime code execution
- Unity: Mono vs Il2Cpp, Unity Engine API access
- No signature scanning needed

- use reflection to find methods



Advanced Reversing Techniques
- Unpacking binaries
- Devirtualization (lifting to LLVM IR)
- Binary Ninja can perform lifts from LLVM IR to BNIL
- IDA Pro’s Lumina can import public symbols
- BinDiff can import symbols from other binaries



Resources
- Cheat Engine (GitHub)
- PolyHook2 (GitHub)
- GuidedHacking (Website)
- dotPeek (Website)

https://github.com/cheat-engine/cheat-engine
https://github.com/stevemk14ebr/PolyHook_2_0
https://guidedhacking.com/
https://www.jetbrains.com/decompiler/


Setup (CMake + Ninja + MSVC)
- Download and install CMake.

- winget install --id=Kitware.CMake -e
- Download and install Visual Studio 2022.

- Make sure to enable Desktop development with C++.
- Download and install Ninja.

- winget install --id=Ninja-build.Ninja -e

https://cmake.org/download/
https://visualstudio.microsoft.com/downloads/
https://github.com/ninja-build/ninja/releases


Visual Studio Code
- Install the clangd and CMake Tools extensions



Build and Inject the Template DLL
- Create a new repository using the template.
- Open the repository in Visual Studio Code
- Set cmake.generator to Ninja in settings
- Select Visual Studio Community 2022 Release - amd64
- Build
- Run with dll-injector.exe <pid> <dll_path>

- e.x. dll-injector.exe 1337 template-dll.dll

https://github.com/Mewski/internal-cheat-template


Next Meetings
2025-11-09 • This Sunday
- Movie Social
- We have a movie in mind but it's still a secret 🙂
2025-11-13 • Next Thursday
- Rubber Ducky / Bad USB
- Turn physical access into RCE with this one simple trick
2025-11-16 • Next Sunday
- SIGPwny x SIGArch
- Our first SIG x SIG meeting of the semester!



sigpwny{ju57_h00k_7h3_ch3ck5}
ctf.sigpwny.com

Meeting content can be found at 
sigpwny.com/meetings.


