g%g SIGPwny

EEE7D FA2025 o 2025-10-19

PWN Ii

Jake Mayer and Tyler Mercado

Tyler Mercado

- SIGPwny Helper
- Statistics & Computer Science

- | like game hacking and SMM
based exploits

Jake Mayer

- SIGPwny Admin
- CS, Math major
- Join embedded team :)

ctf.sigpwny.com

s1igpwny{%p7%pZpprpoprprop%pp }

Carl Schou

- @vm_call
™

After joining my personal WiFi with the SSID
“%p%s%s%s%s%n”, my iPhone permanently disabled

it’s WiFi functionality. Neither rebooting nor changing
SSID fixes it :~)

AirDrop, AirPlay and improved location accuracy require

0

Review: PWN |

- Buffers and variables are stored on the stack, at a fixed size,
contiguous in memory.

- Unsafe functions can write more data than the buffer can
store, leading to Buffer Overflow Vulnerabilities.

- We can control the program flow by overflowing a local

stack variable to overwrite the return address.
~— Low Address

Local Variable

Overflow

\J Modified Return Address @g

— High Address
N~

Shellcode

- Shellcode is a term for bytes of executable
iInstructions that we plan to run.

- You can write your own, or google existing
exploits

- https://www.exploit-db.com/exploits/4 7008

- Search for "x86_64 Linux Shellcode”

- This one opens a shell, but you can do anything,

like allocate memory, open and write to files, etc.

mov eax, 32

Xor eax, eax
push eax

pop ebx

call mysuperfunc
int 0x80

R

https://www.exploit-db.com/exploits/47008

Shellcode

int vulnerable() {
puts("Say Something!\n");

char [8];
gets()
return 0;

Saved Frame Pointer

Return Address =
Address of Shellcode

Addr
on
stack

Shellcode -

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB
{addr on stack}
{shellcode}

More Shellcode

Even More Shellcode

Problem: in order to jump to our shellcode on the stack, we need an address of

something on the stack!

Mitigation: NX (No-eXecute)

- ret2shellcode only works if you have permissions to both
- Write to the memory region
- eXecute the memory region

- Solution: memory should be W*X a.k.a Write XOR eXecute
- Aside: when might we want both?

- The stack is given RW permissions, but never X.
- Back in the day, this was not considered, and the stack was executable!

R

Virtual Memory Protections

- You will learn in CS233 or ECE391 about Virtual Memory and how it
Is handled

- For our purposes, understand that program data, program globals,
stack, heap are all uniquely allocated sections

- The stack (with NX) has RiW- perms
- The heap also has RI- . |
- Png ram Data has R-X e

0x555555556000 0x555555557000 r-- 1000 2000 /home/surg/CTF/csaw/vipblacklist/vip_blacklist

p
. P
- Stat I C G IO bal S h aS R — - Ox555555557000 0X555555558000 r--p 1000 2000 /homg/surg/crf/csgw/vipbpacklis;/yip_b}ackl}sﬁ
3 Bt 2 p i s 7 s 2
)
-p

Ox7ffff7co00000 Ox7ffff7c28000 r- 28000 0 /usr/lib/x86_64-1inux-gnu/libc.so0.6
n
’:) ox7ffff7dbdeee ex7ffff7e15000 r- 58000 1bd000 /usr/ltb/x86 64 11nux gnu/llbc so. 6
- Is there ever write-only perms i Sriss 2
- Ox7ffff7e16000 ex7ffff7e1a600 r- 4000 215006 /usr/llb/x86 64 llnux gnu/llbc so. 6
ox7ffff7fbdeee ox7ffff7fc1000 r--p 4000 (6] [vvarj
Ox7ffff7fc3000 Ox7ffff7fc5000 r--p 2000 0 /usr/lib/x86_64-1inux-gnu/ld-1inux-x86-64.s0.2
ox7ffff7fefoeo ox7ffff7ffaoee r--p boee 2c000 [usr/lib/x86_64-1linux-gnu/ld-1inux-x86-64.50.2
p

ox7ffff7ffbeee ox7ffff7ffdeee r-- 2000 37000 /usr/lib/x86_64-1inux-gnu/ld-1inux-x86-64.s50.2

Mitigation: Stack Canary

- A randomly
generated number
placed before return
address

- Canary value verified
before returning,
crashing if modified.

Problem: how do we leak the stack canary to
bypass this check?

int vulnerable() {
puts("Say Something!\n");
char [4];
gets()
if (rbp+8 != r15){
__stack_chk_fail();
}

return 0O;

Saved Frame Pointer

Stack Canary

Return Address

A

Mitigation: ASLR + PIE

- Address Space Layout Randomization
- Position Independent Executable

- Without PIE, our code is loaded at a fixed address (traditionally
Ox400000).

- With PIE, our code only uses relative offsets.

- Now we can use ASLR, loading our code to a new random address

every time.
- e.q. first load: ©x551234
- e.g. second load: 6x559878

Problem: how do we jump to a function if its absolute address keeps changing? %3: S

Exploit Primitives

- “Building blocks” of an exploit
- Read

- Arbitrary (read anywhere)

- Uncontrolled (read starting from some
address)

- Write

- Arbitrary (write anything anywhere)

- Uncontrolled (write something anywhere)

- Also uncontrolled (write anything
somewhere)

- Leak

- Usually done with a read, but not always
- Useful when addresses are randomized

Vulnerability 1

Vulnerability 2

|

Out-of-bounds
read

\

Address leak

|

Arbitrary write

Y

A

Code
Execution

R

Exploit Primitives

- In PWN |, we had uncontrolled write with buffer overflow
- Now, we will give you binaries with ASLR/PIE/Canary/NX

- We will use arbitrary reads to leak information so we can:
- Jump to a randomized (on run) location of memory
- Keep the Canary intact
- Use executable code wherever allowed

0

Bypassing Mitigations

- To bypass NX, we have to return to executable memory:
- Code in the standard library (libc)
- The target program itself

- To bypass Stack Canary, we need to leak stack memory to learn
the canary's value.
- To bypass ASLR/PIE, we need to leak a pointer to program or stack

memory
- then, we can infer the randomized offset
- offset = leak - base

R

Dangerous Function of the Day: printf()

— Formatted print function

- printf("Hello %s!", "Kevin");
- Hello Kevin!

- printf("My favorite number is 7%d", 1337);
- My favorite number is 1337

- printf("%s, my favorite number is %d", "Kevin", 1337);
- Kevin, my favorite number is 1337

- %s and %»d are format specifiers

- Tells the function to read the next argument as a certain
data type

- %s -> string, %d -> decimal integer, %p -> pointer, etc.

5

Dangerous Function of the Day: printf()

— How might this go wrong?

- printf("%d", "Kevin"); // prints 1302429700
— Wrong specifier misinterprets the argument
— In this case, it's the address of the string "Kevin"

- printf("%d"); // prints 1397277592
— Too few arguments are actually provided
— But printf doesn't know that, so it reads them anyways

0

Dangerous Function of the Day: printf()

— What if it’s just used as a print function?

— printf(name) // name is controlled by the user
— If name is ‘Kevin’, prints ‘Kevin’

— If name is ‘%<’ prints...

— Format specifiers follows the prototype:
— %|flags][width][.precision][length]specifier

0

Primitive: Stack Read

— %p ‘pointer’ format specifier
— printf("%p", 0x13371337);
— Prints ‘9x13371337°
— printf("%p");
- What happens now?

0

Review: Calling Functions

8 bytes

8 bytes

printf("%p", 0x1234);

%rdi — "%p"

%rsi = 0x1234

Local Variables

Low Address
'\

Saved Base Pointer

Stack grows to

Return Address

lower address

...Prior Stack Data

The stack

4 High Address

&

New: Calling Functions

printf (" %pkpipipsp”, 1,

8 bytes

8 bytes

srdi — "%plphbplhplp"

»rsi =1

Low Address

Local Variables

Saved Base Pointer

Return Address

...Prior Stack Data

The stack

— High Address

&

New: Calling Functions

printf (" %pkpipipip’pt, 1, ..., 6);

%rdi — "%pkplplplplp" | %rsi = 1

Low Address

Local Variables

8 bytes Saved Base Pointer

8 bytes Return Address

8 bytes < 6

...Prior Stack Data

The stack

~ ighadaress SGT
Ig ress é§§§>

printf Exploitation

printf (" %pkphphplplplpiplp%sp™) ;

8 bytes

8 bytes

%rdi — "%phplplplplplplkplpp "

Local Variables

Saved Base Pointer

Return Address

...Prior Stack Data

The stack

Low Address

&~

— High Address

LS

Primitive: Stack Read

— %p format specifier
— printf("%p", 0x13371337);
— Prints ‘9x13371337°

— printf("%p");
— Whatever is next in arguments, eventually stack memory!
— printf("%p %p %p %p %p %p %p");
— Prints out some registers and stack memory, 8 bytes at a time

— Figure out which data is the thing you want :)

— If the string ‘sigpwny{’ were on the stack, you might see:
- 0Ox7b796e7770676973

- These are hexadecimal ASCII values, online converters may be useful

— Note:
— %p interprets data as little endian

5

Primitive: Arbitrary Read

— %s format specifier

— printf("%s", "hello");
— Prints ‘hello’

— printf("%s", 0x12345678);
— Prints the string starting from memory address 0x12345678

- printf("%3%s", 0x100, 0x200, 0x300);
— Prints the string starting from memory address 0x300 (3rd argument)

0

Primitive: Arbitrary Read

- char name[64]; // stored on stack
- fgets(name, 64, stdin); // ‘%n$p’ <- n is a number
- printf(name);
— For some n, the %n$p will print name!
— E.g. 0x70243525
— Key idea:
— Format specifiers can read from the stack, and name is on the stack
— Format specifiers can reference our input!

— If name is ‘“%n$s’ (for correct n)
— Prints the string starting from a memory address in our input

R

Primitive: Arbitrary Read

- char name[64]; // stored on stack
- fgets(name, 64, stdin);
- printf(name);
— Ifnameis %n$s___ NXTINX22NSSNXAANXSENXEENXZINXE8 * (for correct)
— Prints the string starting from memory address 0x8877665544332211
— We can read from memory addresses contained in our input
— Note: why the underscores?
— Each argument is 8 bytes: len(‘%n$s__ ’) == 8, so the address is aligned
correctly. Pad to a multiple of 8 bytes before the address.
— Testing strategy:
— Develop with %n$p instead of %n$s and verify the correct address gets

printed
— Then switching to %s will make it read from the correct address!

5

Primitive: Arbitrary Write

— %n format specifier
— Writes the number of bytes previously printed to the given address
— printf("%n", &number);
- number = 0;
— printf("AAAA%N", &number);
— number = 4;
- printf("%500p%n", 1, &number);
- number = 500;

- ‘9%500p’ means format as pointer, padding to 500 characters
— In this case, ‘0x1’ preceded by 497 spaces
— [Easy way to print a given number of bytes

0

Primitive: Arbitrary Write

- Testing strategy:
— Develop with %n$p instead of %n$n and verify the correct address is printed
— Then switching to %n will make it write to the correct address!

— Note: by default, %n writes 4 bytes
— "h" is a size specifier flag
— %hn writes 2 bytes, %hhn writes 1 byte

0

Libc

- Libc is a program that is loaded at the same time as your program,

which hold the standard library
- If we get a leak to libc, we get access to many powerful functions

we can control or strings (e.g. “/bin/sh”)
- The GOT (Global Offset Table) contains addresses to libc functions

- The GOT is writable! (e.g. puts->system)

R

N~

one_gadget

- There is a tool called one_gadget, which given a binary, finds a
location which will call execve('/bin/sh/",?,?)

- A method to pop a shell as a ‘win function’ (useful when NX is on)

- Provided that the register constraints are met, there are several
positions in libc that we can return to.

Srgapop-os: $ one_gadget libc-2.27.so0
0x4f2a5 execve("/bin/sh", rsp+0x40, environ)
constraints:

rsp & Oxf == 0

rcx == NULL

0x4f302 execve("/bin/sh", rsp+0x40, environ)
constraints:

[rsp+0x40] == NULL

0x10a2fc execve("/bin/sh", rsp+0x70, environ)

constraints:
[rsp+6x70] == NULL _ Q

https://github.com/david942j/one_gadget

Next Meetings

2025-10-23 « This Thursday

- Cryptography Il
- Learn more security related cryptography, including RSA!

2025-10-26 « Next Sunday

- Python Jails
- Learn about how to escape python sandboxes!

0

ctf.sigpwny.com

s1igpwny{%p7%pZpprpoprprop%pp }

Meeting content can be found at
sigpwny.com/meetings.

é-g SIGPwny

