
Cryptography I
FA2025 • 2025-10-16

Ryan Yin, Nikhil Date

General

Announcements
– We will be playing Hack.lu CTF on Friday at 6:00 PM in Siebel CS

2406 (room may change)!
– There will be free food!

http://hack.lu

sigpwny{a1ic3_4nd_b0b}
ctf.sigpwny.com

funny image here

What is Cryptography all about?
- Secure communication between 2+ parties (Alice, Bob)
- Ensure that your “information” is safe from “threats”.

Consequences of bad cryptography
- Mary Queen of Scots executed for conspiring to kill Queen

Elizabeth I (Babington Plot)
- Vulnerabilities in OpenSSH (e.g. CVE-2008-0166) give an attacker a

free shell on your system
- Adobe password breach (unsalted passwords exposed)
- PlayStation 3 Console ECDSA key recovery

Then vs. now
- Cryptanalysis done manually by spymasters, generally very targeted

(e.g. military use)
- Schemes were secure until they weren’t
- Security by obscurity “ok”

- Current day: your computer send millions of encrypted packets to
tens of thousands of hosts

- We need schemes predicated on computational hardness
assumptions (if these assumptions hold, this scheme is secure to
these categories of attacks)

- To implement cryptographic protocols, we use primitives treated as
unbreakable and problems that are considered “hard”.

Substitution ciphers
- Caesar Cipher (a.k.a. rot13, hint for Vim users: :h g?)

- Add 13 to every letter in the alphabet (with wraparound)
- Ex. CAESAR -> PNRFNE

- Generally, any function that maps each letter to another letter
- Insecure!! Why?
- Cryptanalysis

- Frequency analysis
- Known plaintext (cribs): “Keine besonderen Ereignisse” (nothing to report)
- Only 25 keys for Caesar Cipher, so we can try them all

Data Representation
>>> from Crypto.Util.number import long_to_bytes

>>> long_to_bytes(3735928559) # integer

b'\xde\xad\xbe\xef'

>>> base64.b64decode(b'3q2+7w==') # base64

b'\xde\xad\xbe\xef'

>>> bytes.fromhex("deadbeef") # hex string

b'\xde\xad\xbe\xef'

XOR

A B A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

A.k.a. addition mod 2
Associative, commutative, self-inverse

The one-time pad

>>> plain = b"Test"

>>> cipher = bytes.fromhex("cafebabe")

>>> bytes([i ^ j for i, j in zip(cipher, plain)])
b'\x9e\x9b\xc9\xca'

What are we doing here?

The one-time pad

- Achieves “perfect secrecy”! 🥳
- …but at what cost?

- Requires a completely random bitstring the same length of
your plaintext
- Repeating your pad or having non-random pads defeats the purpose
- Not only does this double the message size, but how do you agree

on this shared secret?
- Pseudorandom generators can “stretch” a little bit of randomness

into a lot of randomness
- Stay tuned for AES in crypto III…

Symmetric Encryption
- Encryption where both parties know some shared key

in advance.
- Encryption scrambles the input using some property

of the key
- Decryption is simply encryption in reverse.
- Security property is chosen plaintext security

- Even after the encryptions for many ciphertexts are
revealed, the attacker still can’t guess the encryption for a
plaintext they haven’t seen yet

Diffie-Hellman

- Alice and Bob arrive at a shared
secret using their private secrets

- All communication happens over
a public channel

- Modern implementations perform
computations over elliptic curves
(ECDH)

Diffie-Hellman

- Finite-Field Diffie-Hellman relies on the fact that
it’s hard to compute a^bc mod p given a^b mod
p and a^c mod p

- Each side generates a secret value x, then sends
a^x mod p

- Then the value is exponentiated on each side
using the secret value.

- Both end up with a^bc mod p
- Pick p such that it is a large prime number
- Pick a as a primitive root mod p

Computational hardness
- We cannot actually prove that these are hard, but they are strongly

believed to be hard
- This assumption turns out to be false for quantum computers, which is why

people want to build quantum computers
- Discrete log/factoring problem

- Exponentiation is easy, logarithms are hard
- RSA relies on a similar premise, but the hard problem is factoring

Tools

- Pen and paper
- Wikipedia
- Stack Exchange
- SageMath, PyCryptodome, pwntools

from sage.all import *
from pwn import *

conn = remote('localhost', 1337)

a = int(conn.recvline()[3:].decode('utf-8'))
b = int(conn.recvline()[3:].decode('utf-8'))
sol = a.powermod(b, p)

conn.recvuntil(b'c = ')
conn.sendline(str(int(sol)).encode('utf-8'))
print(conn.recvline())

https://github.com/sagemath/sage
https://www.pycryptodome.org/
https://docs.pwntools.com/en/stable/index.html

Food for thought
- How can encryption be done asymmetrically? (RSA, Crypto II)
- How does Alice know she’s really talking to Bob? (digital

certificates, web of trust, public key infrastructure)
- If you take one thing away from this meeting: never roll your own

crypto!

CryptoHack

Learn with fantastic lessons and
challenges, and earn points on
PwnyCTF while you’re at it!
ctf.sigpwny.com/challenges#Meetin
gs/CryptoHack

https://cryptohack.org/
https://ctf.sigpwny.com/challenges#Meetings/CryptoHack
https://ctf.sigpwny.com/challenges#Meetings/CryptoHack

Challenges
- Start with First XOR, flag_format (both XOR-based) and Vigenère

Visionary
- Diffie-Hellman god has you do the Diffie-Hellman shared secret

computation (look at Wikipedia for implementation details)
- First AES and Add One are based on the “Advanced Encryption

Standard (AES)” block cipher

Next Meetings
2025-10-17 • This Friday
- Hack.lu CTF
- Come to Siebel CS 2406 for Hack.lu CTF at 6:00 PM. There will be

free food as always!
2025-10-19 • This Sunday
- Pwn II
- Learn about control flow hijacking and format string attacks!
2025-10-23 • Next Thursday
- Cryptography 2
- Topics include Chinese Remainder Theorem and RSA

http://hack.lu
http://hack.lu

sigpwny{a1ic3_4nd_b0b}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

