
x86-64 Assembly
FA2025 • 2025-10-05

Slides by Julius White, Emma Shu, and Sam Ruggerio

General

Julius White V

- Computer Science AND
Economics

- I have windmill dunked a
basketball

- Admin in SIGPwny

ctf.sigpwny.com

sigpwny{r0LL3r_c0a$TeR_tyc00n}

Announcements
- AmateursCTF this weekend is unfortunately canceled

NEW PLAN: Game night in Siebel with pizza on Friday!
- Details will be sent in an announcement on Discord

- First lockpicking social Monday 10/13 at 7 PM!
- Will talk briefly about the history of magstripe and do a demo

What is Assembly?
- A human-readable abstraction over CPU machine codes

010010000000010111011110110000000011011100010011

48 05 DE C0 37 13

add rax, 0x1337c0de

What is Assembly?

method:

 push rbp

 mov rbp, rsp

 mov DWORD PTR [rbp-20], edi

 mov DWORD PTR [rbp-4], 6

 mov BYTE PTR [rbp-5], 99

 mov edx, DWORD PTR [rbp-20]

 mov eax, DWORD PTR [rbp-4]

 add eax, edx

 pop rbp

 ret

int method(int a){

 int b = 6;

 char c = 'c';

 return a+b;

}

Basic CPU Structures

Instruction Memory Registers Stack

Instruction Memory
- Contiguous memory of executable data
- “This is where your compiled program lives in RAM”

- Normally, only read & execute permissions (security feature)

- At very low address space (below the heap!)

- Managed by the special purpose
Instruction Pointer register (rip) also called program counter

- Simply, Instruction memory is just RAM that holds your program's
code. The CPU fetches from it, executes it, and moves on

Registers
- 16 general purpose "variables" that the CPU can operate on. On a

64 bit architecture, each are 64 bits wide.

- Most can be used for whatever you want within a function, except
for:
- rbp which is the "Base Pointer" register
- rsp which is the "Stack Pointer" register

- We can access lower bits using various namings for each register

alax

Registers
8 Byte 4 Byte 2 Byte 1 Byte

rax eax ax al

rbx ebx bx bl

rcx ecx cx cl

rdx edx dx dl

rsi esi si sil

rdi edi di dil

rsp esp sp spl

rbp ebp bp bpl

rX rXd rXw rXb These registers are named r8 through r15

01 23 45 67 89 ab cd ef

rax eax

- The region of memory
dedicated to functions and
local variables

- Push to the stack to add
data, pop to remove
newest element. (LIFO)

- If the heap and stack meet
you get a stack overflow or
out of memory error

Memory Region

code/globals/strings

heap

stackTop of Memory
(0xFFFFFFFF)

Bottom of Memory
(0x00000000)

Stack

Stack & Registers
- There are two registers dedicated to managing the stack

- rsp - holds the address of the top of the stack
- If you want to allocate memory on the stack, you subtract from rsp
- Likewise to deallocate, add to rsp.

- rbp - holds the address of the start of the stack frame
- The value at the address holds the base ptr of the calling function

Stack & Functions

Local Variables

Saved Base Pointer

Return Address

Arguments

rsp

rbp

Saved Base Pointer vs Return Address
(what’s the difference?)

saved base pointer - the scope of the previous function

return address – the line to go back to in the previous function

temp = 67 = “we are holding 67 in a register”

Saved base pointer = “you were running the main() function”

Return Address = “you were at line 11 in main()

arguments = arg0 = 3

1 helper(int arg0) {
2
3 int temp = 67; // lol
4
5 int temp2 = 100;
6
7 return;
8 }
9 main() {
10
11 helper(3);
12
13 }

Stack & Functions

b = 7

c = 'a'

d = 2.5

Saved Base Pointer

Return Address

a

method_1(int a){

int b = 7;

char c = 'a';

float d = 2.5;

return a+b

}

rsp

rbp

A Note on Syntax

Intel vs AT&T

Intel AT&T

Registers rax, rsp, r15 %rax, %rsp, %r15

Immediates (Constants) 0x123 $0x123

Command Order / Typing add eax, bx

Comments ; this is a comment. // this is, too.

addzqd %bx, %eax

Basic Assembly
mnemonic destination, source(s)

e.g.

add rax, rbx nop

sub dx, 0x1235 mov rbp, rsp

and rsp, rbp imul r8, r10, 0x20

xor rsi, rsi shl rcx

inc ecx sar rdi, 5

Logic Flow
- We can use jmp addr to jump to nearby addresses in our

instruction code

- near/short jumps are relative, but when writing we can use labels!

- This is one of the few ways to modify rip (hopefully) safely.

Logic Flow
- Assembly compares values by subtracting values (a-b)

- If we get 0, a=b
- If we get a positive number, a>b, otherwise, a<b

- cmp subtracts two registers and sets flags (RFLAGS register) for
later use

- jCC jumps to address if condition is met,
based on flags set by cmp. There's 64 of them.

Logic Flow
mov rbx, 0x20 ; move 32 into rbx

mov rax, 0x15 ; move 21 into rax

foo:

 cmp rax, rbx ; compare rax and rbx

 jne bar ; if not equal, jump to bar label

 xor rax, rax ; zero out rax

 ret ; return

bar:

 dec rbx ; decrement rbx

 jmp foo ; jump to foo label

Logic Flow
first = 32 # move 32 into rbx

second = 21 # move 21 into rax

while (first != second): # compare first and second

 first -= 1 # decrement first

return # why are python and x86 different

(in terms of returning variables)

Logic Flow
push rdi

mov rdi, 0x20 ; move 32 into rdi

mov rax, 0x15 ; move 21 into rax

assembly logic …

pop rdi ; we expect our return value to be in rax

Using the Stack
- Use push (reg/imm) to push a 16 bit, 32 bit or 64 bit value onto the

stack.
- rsp is automatically decremented

- Use pop reg to pop a value from the stack into a register
- rsp is automatically incremented

push:
- mov rsp, reg
- rsp -= 4

pop:
- mov reg, rsp
- rsp += 4

mov rax, 0x1337c0de

push rax

xor rax, rax

pop rbx Saved Base Pointer

Return Address

rax: 0x1234567890abcdef
rbx: 0x1234567890abcdef

rsp
rbp

Using the Stack

mov rax, 0x1337c0de

push rax

xor rax, rax

pop rbx Saved Base Pointer

Return Address

rax: 0x000000001337c0de
rbx: 0x1234567890abcdef

rsp
rbp

Using the Stack

mov rax, 0x1337c0de

push rax

xor rax, rax

pop rbx

0x000000001337c0de

Saved Base Pointer

Return Address

rax: 0x000000001337c0de
rbx: 0x1234567890abcdef

rsp

rbp

Using the Stack

mov rax, 0x1337c0de

push rax

xor rax, rax

pop rbx

0x000000001337c0de

Saved Base Pointer

Return Address

rax: 0x0000000000000000
rbx: 0x1234567890abcdef

rsp

rbp

Using the Stack

mov rax, 0x1337c0de

push rax

xor rax, rax

pop rbx Saved Base Pointer

Return Address

rax: 0x0000000000000000
rbx: 0x000000001337c0de

rsp
rbp

Using the Stack

Syscalls
- The linux kernel provides a set of functions to interface with the OS.

- glibc provides wrappers, so most programs use glibc calls
- But you can inline system calls without calling glibc at all!

- Examples of system calls: read, exit, open, execve

Calling a Syscall
- Load the syscall id into rax

- The most up-to-date resource of ids to syscalls is the abi table:
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/sysca
ll_64.tbl

- Load your arguments into the registers, in order, as follows:
rdi, rsi, rdx, r10, r8, r9

- Use the syscall instruction
- return value, if needed, is stored in rax

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

Calling a Syscall

exit(10);

execve("/bin/sh",
NULL, NULL);

mov rax, 0x3c

mov rdi, 0x0a

syscall

mov rax, 0x3B

mov rdi, rsp ; /bin/sh is on the stack

xor rsi, rsi

xor rdx, rdx

syscall

Pointers and Dereferencing
- At a high level, use braces to dereference a pointer

mov rax, [rbx] ; moves the memory pointed by rbx to rax

- You may use a index register, a scale for that index, and a
displacement in a dereference

mov rax, [rbx + rcx*4 + 0x1a]

- This is useful for iterating through arrays

- Writing to memory can be done the same way
inc [rsp] ; increments the top value on the stack by 1

A little history lesson (respect your elders)

- Commercial blockbuster
- Sold millions of copies and

successfully competed in the
late 1990s gaming market

- Massive scope
- pathfinding algorithms
- financial systems
- ride physics
- intricate game logic

ALL IN X86
ASSEMBLY?!?!?!?!?

A little technical history lesson
(respect your elders)

- 99% x86 assembly written by one
developer
- Chris Sawyer coded the entire

game in assembly, not a
higher-level language

- Ran on 16MB RAM
- Managed thousands of guests and

complex simulations on minimal
hardware

- Tiny executable of ~15-16 MB
- The main program file was

remarkably compact, with total
installation around 180 MB
including all assets

Resources
RTFM: https://www.felixcloutier.com/x86/
Online Assembler: defuse.ca/online-x86-assembler
Syscall Table & Argument Convention:
https://syscalls.pages.dev/
Flat Assembler/Fasm: https://flatassembler.net/
Compiler Explorer: https://godbolt.org/

https://www.felixcloutier.com/x86/
https://defuse.ca/online-x86-assembler.htm#disassembly
https://syscalls.pages.dev/
https://flatassembler.net/
https://godbolt.org/

Challenges
- 1 - asm_adder
- 2 - asm_leaver
- 3 - asm_reader
- 4 - asm_shellcode
- 5 - asm_modifier

Use pwntools! An example script:
from pwn import *

conn = process("./chal") # or remote("link", port)

conn.sendline(b'your shellcode here')

conn.interactive()

Next Meetings
2025-10-09 - This Thursday
- Reverse Engineering II
- Learn how to reverse engineer x86 binaries!
2025-10-10 - This Friday
- AmateursCTF 2025 is canceled, so we're going to do a game night

with pizza instead!!

sigpwny{r0LL3r_c0a$TeR_tyc00n}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

