
Reverse Engineering I
FA2025 • 2025-10-02

Juniper Peng and Ryan Yin

General



Announcements
- Fall CTF 2025 Challenge Repo is now public!

- https://github.com/sigpwny/fallctf-2025-public-chal-repo
- This includes writeups from our challenge authors and our challenge 

hosting infrastructure. 
- Take a look at our challenge solutions!
- We will continue to host all of our fallctf challenges for another week.

- AmateursCTF 2025
- We will be playing AmateursCTF 2025 next Friday!
- Come to Siebel CS (room tbd) at 7:00 PM on Oct. 10. There will be free 

pizza!

https://github.com/sigpwny/fallctf-2025-public-chal-repo


Juniper Peng

- Helper
- Computer Science
- Esolang enthusiast



Ryan Yin

- Helper
- Computer Science
- The photo was taken the day after 

my application was turned in.



sigpwny{its_open_source_if_you_try_
hard_enough}

ctf.sigpwny.com



Which is easier to understand?



Overview
- Basics

- Motivation
- Types of analysis
- Abstraction levels

- Techniques
- Common patterns
- Tools

- Examples



What is reverse engineering?

Basics



Motivation
- Reverse engineering: reading other people's code
- Goal is to understand the code

- The code is never "wrong" — it is the ultimate "documentation"
- Not all code is easy to read or well-documented
- Sometimes code is intentionally hard to understand (i.e. obfuscated)



- Static Analysis
- Reading code
- Using tools to understand code

- Dynamic Analysis
- Running code
- Inspecting program state while it is 

running

Static and and dynamic analysis are not 
a dichotomy! Use them together!

Static vs Dynamic Analysis

More helpful if...

- Code is simple
- Code is hard to run

More helpful if...

- Code is complex
- Useful data in memory



Abstraction Levels
- High level

- Python, JavaScript, etc.
- Easy to analyze

- Low level
- C, assembly, etc.
- Harder to analyze
- More details about machine-specific behavior
- Everything is ran as machine code at some point

Assembly

C

Python, JavaScript

Machine code

C++

M
or

e 
ab

st
ra

ct



How to reverse engineer?

Techniques



Static Analysis
- Function rewriting

- Simplify complex portions of code
- Find known algorithms/patterns
- Decompilers

- Automatically extract abstractions from low level programs
- Turn assembly into more readable C
- Will be covered in depth in Reverse Engineering II meeting

- Deobfuscation
- Renaming functions and variables with more descriptive names
- Using heuristics to figure out what was originally meant



Example: Common patterns

Can we simplify this code?

For loop



Example: Common patterns

Simplify even more?

Order doesn't matter here



Example: Common patterns

Even simpler? Use list comprehension



Example: Common patterns



Example: Common patterns

Which level of simplification is the most useful? Depends



- Partial evaluation
- Evaluate small portions of the code to reduce complexity
- Observe behavior, such as variables

- Modifying programs
- Add or remove code
- Add print statements
- "Patching" binaries

Dynamic Analysis



Advanced Dynamic Analysis
- Debuggers (Reverse Engineering II)

- gdb, pdb

- Side channels (Reverse Engineering III)
- Instruction counting, time counting



Example: Modifying Code



Patch in a print

$ python3 test.py
What is the flag? aaaa
flag
That's definitely wrong.

Example: Modifying Code



Example: Reverse Evaluation

w = ['30', '91', '62']
w = ['3', '9', '6']
w = ['6', '9', '3']
q = 693
q = 99

q = 'c'



Go try challenges!
- Go to ctf.sigpwny.com
- Start with Python RE 1: Easy rev

- If you don't have Python installed, see slides from setup meeting 
(Intro to Terminal and Setup)



Next Meetings
2025-10-05 • This Sunday
- x86-64 Assembly
- Learn the fundamentals of x86-64 Assembly, including the stack, 

memory, registers, instructions, and syscalls.
- Very important meeting to prepare for Rev II.
2025-10-10 • Next Friday
- AmateursCTF 2025
- Meet us in the Siebel Computer Science building at 7:00 PM to play 

AmateursCTF! There will be free pizza!



sigpwny{its_open_source_if_you_try_
hard_enough}

ctf.sigpwny.com

Meeting content can be found at 
sigpwny.com/meetings.


