
Kernel Security
SP2025 Week 14 • 2025-05-01

Nikhil Date and Akhil Bharanidhar



Announcements

- End of year Social on Wednesday 5/7!
- Come to our end of year social to celebrate our graduating members 

and a year's worth of hard work!



sigpwny{the_docs_are_the_source_code}
ctf.sigpwny.com



The Kernel

- Provides (along with 
drivers) an interface 
to hardware 
resources

- Enforces isolation 
and security 
mechanisms

- Manages all 
“low-level” tasks

- Provides process 
scheduling and 
concurrency

- And more



Why care about kernel security?

- Kernel runs in most privileged 
mode, has unrestricted access 
to hardware

- Most security mechanisms 
(authentication/access control, 
process isolation, etc.) rely on 
the integrity of the kernel

- Once you compromise the 
kernel, you can do pretty much 
anything you want on the 
system



Standard Kernel Pwn Setup

- “Secure” kernel image with vulnerable kernel module
- Could also have vulnerable kernel image (typically with a diff 

provided against a real Linux version)
- Also provided root filesystem (doesn’t really have anything to 

do with root user)
- Access to non-privileged shell on machine
- Can run arbitrary code as user
- Goal is to become root



Standard Kernel Pwn Setup

- Run kernel image using QEMU
- Attach GDB to debug exploit



ret2usr

- When you ask the kernel to 
do something (e.g. through 
a system call), the CPU 
switches into a more 
privileged mode

- Kernel code then runs with 
privileged access

- Once kernel is done, CPU 
switches back and hands 
control to user program



ret2usr

- Suppose we could trigger the following code in the kernel
- copy_from_user copies data from user-space into 
kernel-space

void vulnerable_kernel_func(unsigned long addr) {

char buffer[256];

volatile int size = 512;

return copy_from_user(&buffer, addr, size);

}



ret2usr

- Buffer overflow gives us arbitrary code execution
- Ideally, we want to execute shellcode
- Place shellcode in userspace and jump to user code!
- No context-switch happens, so user code will run with kernel 

privilege 



ret2usr

- Once we have a kernel exploit, it’s a good idea to use it to 
become root, since then we don’t have to do the rest of the 
attack from “inside” the exploit

- How to become root in two function calls
- prepare_kernel_cred(0) returns credentials for root user
- commit_creds sets current user process creds

- If we call commit_creds(prepare_kernel_cred(0)) in the user code 
we jump to, we are root

- We can then switch back to user mode and pop a shell (which is now a 
root shell)

- At this point we have full control of the system
- Actual details are a bit intricate, follow blog post linked at the end of 

slides



Kernel Defenses

- Stack canaries
- DEP/W ^ X
- kASLR

- randomizes kernel base address, but small amount of entropy due to 
alignment constraints (9 bits on Linux)

- SMEP (supervisor mode execution prevention)
- There is no good reason why user code should be able to execute 

with kernel privileges
- Use user/kernel bits in page entries to prevent code in user pages 

from being executed while CPU is in kernel mode
- SMAP (supervisor mode access prevention)

- Stronger than SMEP: disallow all accesses to user memory in 
kernel-mode (with some exceptions when this is actually needed)

- Seccomp restricts user access to syscalls



More Attacks

- Kernel ROP: useful if SMAP/SMEP is enabled, same idea as 
user ROP

- Data-only attacks: overwrite sensitive data
- task structure contains uid/gid, overwrite to 0 to become root

- OOB reads to break kASLR
- Many attacks use similar primitives as user-space pwn



Kernel Memory Allocation

- Two-levels of memory allocation: low-level page allocation 
and higher-level chunk allocation

- Page allocator (get_free_pages) allocates in units of pages 
using buddy allocator

- Higher-level allocator (kmalloc) is a slab allocator: SLAB, 
SLUB (default), SLOB, etc.

- Slab allocator maintains caches of chunks for specific kernel 
objects, along with generic chunks



SLUB Overview

- Three levels: caches, 
slabs, and chunks

- Each cache is allocated 
with a kernel object (or is 
a generic cache) and 
contains slabs

- A slab consists of 
contiguous pages and 
holds chunks

- Chunks are the actual 
objects



SLUB Overview

- SLUB free objects store pointer to next free object
- Allocated objects store no metadata (makes it easy to 

overwrite sensitive data without corrupting allocator state)
- We can also try to corrupt metadata, though there are some 

security checks (like checking that next free chunk actually 
resides in the current slab)



Attacking SLUB

- As an attacker, we have the ability to allocate kernel objects 
by making system calls

- We can try to ensure that arrangement of objects is to our 
advantage (for e.g. sensitive object comes after vulnerable 
object)

- Heap sprays (allocating large number of objects) can help 
increase chance of success



Resources

- https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-pa
rt-1/ (basic attacks)

- https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
- pwncollege Kernel Exploitation Module
- https://github.com/xairy/linux-kernel-exploitation
- Great talk on SLUB: 

https://www.youtube.com/watch?v=2hYzxsWeNcE
- https://elixir.bootlin.com/linux/v6.14.4/source

https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/
https://duasynt.com/blog/linux-kernel-heap-feng-shui-2022
https://github.com/xairy/linux-kernel-exploitation
https://elixir.bootlin.com/linux/v6.14.4/source


Challenge

- Try to reproduce the exploit here (there is a full solution given 
but try to do it without looking at the solution)

- https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-pa
rt-1/

https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/
https://lkmidas.github.io/posts/20210123-linux-kernel-pwn-part-1/


Next Meetings

2025-05-04 • This Sunday
- Game Hacking
- Learn how to hack games!
2025-05–07 • This Wednesday
- End of Year Social
- Our last get together of the year, goodbye to our graduating 

members, prizes for pwnyctf, and more!



sigpwny{the_docs_are_the_source_code}
ctf.sigpwny.com

Meeting content can be found at 
sigpwny.com/meetings.


