
Blockchain
SP2025 Week 12 • 2024-04-17

Jake Mayer and Michael Khalaf

Announcements

- b01lers CTF 2025 tomorrow at 6 PM!
- Come to the Siebel CS building to play in our friend/rival team's CTF.

- Room TBD, probably 2405
- Free pizza will be provided!

sigpwny{0verflow1ng_wit5_crypt0}
ctf.sigpwny.com

What is Blockchain?

- Traditionally, finance relies on trusted institutions
- What if we didn't need to trust anyone?

Goals

- Decentralized
- Cryptographic authorization
- Prevent double-spend
- Maintain state integrity (immutable and irreversible)

Means

- Digital signatures
- Distributed ledger
- Consensus mechanism
- Peer-to-peer network

Bitcoin

- First implementation of decentralized currency
- Allows parties to transact Bitcoin using digital signatures
- The state of the network is validated through cryptographic

means
- No more trusted parties

- Introduced Proof-of-Work (PoW) consensus mechanism
- Ex. I want to send money to pay for something

Ethereum

- What if we could extend Bitcoin to turing-complete
applications?

- Allows parties to interact with smart contracts: NFTs, trading,
governance

- Ex. I want to vote on a governance proposal

Crypto Review: Digital Signatures

- Keypair: corresponding public and private key
- Public key identifies a party
- Private key is used to generate signatures

- A signature verifies that the owner of the private key
authorizes a message

Crypto Review: Hashing

- One-way function (arbitrary length input -> fixed length
output)

- Extremely difficult to find multiple inputs with the same output
- Ex. SHA-256 (Bitcoin), KECCAK-256 (Ethereum)

Transactions

- The basic unit for interacting with a cryptocurrency system
- Signed by the party's private key
- Authorized for the corresponding public key
- Modifies the state of the blockchain

Distributed Ledger

- Records the state of the system (ie. account balances,
contract storage, etc.)

- Ex. Bob has $1000, a governance proposal passed, etc.

Blockchain

- How the ledger is stored
- Transactions grouped into blocks
- Blocks are identified by their hash
- Blocks are chained by including the previous block's hash in

the next hash calculation

Block 100: …0a8ce26f

Tx State HashTx

Prev. Hash …18eb6048

Block 101: …19d6689c

Tx State HashTx

Prev. Hash …0a8ce26f

Consensus

- How do we determine the state of the blockchain?
- Need a mechanism for determining the current/head block

- The rest of the state is a consequence
- Makes it difficult for a single entity to control the network

Proof-of-Work Consensus

- Consensus by demonstrating computational power (work)
- Blocks get their authority by demonstrating sufficient work

- Miners search for a nonce to create a low enough hash
- Producing valid blocks requires high computational power
- Mining difficulty is adjusted dynamically for pacing

Block: 00…0019d6689c

Tx State HashTx

Prev. Hash Nonce ⛏

Peer-to-Peer Network

- This is great, but how can we distribute it?
- Participants find each other through discovery protocols
- Participants:

- Share pending transactions
- Pool pending transactions
- Mine proof-of-work verification
- On successfully finding proof-of-work, broadcast the block
- Accept valid blocks as new state of blockchain

All Together

How can Bob send Alice $10?

All Together

How can Bob send Alice $10?

Bob👨
Create & Sign transaction:

Send $10 to
Alice 🔑

All Together

How can Bob send Alice $10?

Bob👨
Create & Sign transaction:

Alice👩
Waiting for $10:

Send $10 to
Alice 🔑

Block n: …1be25635

Alice: $0

Block n+1: …301c2363

All Together

How can Bob send Alice $10?

Bob👨
Create & Sign transaction:

Miner⛏
Collect pending transactions:

Alice👩
Waiting for $10:

Send $10 to
Alice 🔑

Send $10 to
Alice 🔑

Tx

Tx

Block n: …1be25635

Alice: $0

Block n+1: …301c2363

All Together

How can Bob send Alice $10?

Bob👨
Create & Sign transaction:

Miner⛏
Mine proof-of-work nonce:

Alice👩
Waiting for $10:

Send $10 to
Alice 🔑

Send $10 to
Alice 🔑

Tx

Tx

Nonce ⛏

Block n: …1be25635

Alice: $0

Block n+1: …301c2363

All Together

How can Bob send Alice $10?

Bob👨
Create & Sign transaction:

Miner⛏
Broadcast New Block:

Alice👩
Received $10:

Send $10 to
Alice 🔑

Send $10 to
Alice 🔑

Tx

Tx

Nonce ⛏

Block n+1:
…301c2363Alice: $10

51% Attack

- The attacker has majority of the network's hash power
- Reliably produce blocks faster than the rest of the network
- Attacker can arbitrarily manipulate the network and rewrite

history
- Double spending: Claw back money spent and spend elsewhere
- Censor transactions

- Typically, regular mining incentives outweighs loss of value if
currency becomes untrusted
- Expensive to execute

51% Attack

- Several historical attacks have occurred
- In one example, an attacker multiple-spent $17.5-18.6 million

worth of BTG by targeting cryptocurrency exchanges
- ETC has suffered numerous attacks including $millions of

double-spend due its decreasing popularity with miners
- Hash power can be rented through services like NiceHash
- Accessibility of hash-power-for-hire underscores the need for

honest mining incentives (e.g. block reward, transaction fees)

https://dci.mit.edu/51-attacks
https://www.zdnet.com/article/bitcoin-gold-hit-with-double-spend-attacks-18-million-lost/
https://neptunemutual.com/blog/ethereum-classic-51-attacks/

51% Attack

- Goal: A (attacker) wants to claw back money sent to B (victim)
to use elsewhere

- Method: Use hash power advantage to create a new chain
without the transaction

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Public chain

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Block n:

Send $5
A -> B

Plot twist! We've
been mining in
private…

Public chain

Private chain

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Block n:

Send 20
A -> B

Plot twist! We've
been mining in
private…

Public chain

Private chain

Attacker
excludes the
transaction from
the new block

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Block n:

Send 20
A -> B

Block n+1:

Tx

Tx

Block n+50:

Plot twist! We've
been mining in
private…

Tx

Tx

Public chain

Private chain

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Block n:

Send 20
A -> B

Block n+1:

Tx

Tx

Block n+50:

Plot twist! We've
been mining in
private…

Tx

Tx

Public chain

Private chain
Broadcast
private
blockchain

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Block n:

Send 20
A -> B

Block n+1:

Tx

Tx

Block n+50:

Plot twist! We've
been mining in
private…

Tx

Tx

Block n+50:

Public chain

Private chain
Broadcast
private
blockchain

Network accepts longer chain
excluding the spend

Tx

Tx

51% Attack

Block n:

Send $5
A -> B

Block n+1:

Tx

Tx

… Eventually, B sees
that their $5 has
been confirmed for
several blocks

Block n:

Send 20
A -> B

Block n+1:

Tx

Tx

Block n+50:

Plot twist! We've
been mining in
private…

Tx

Tx

Block n+50:

Public chain

Private chain
Broadcast
private
blockchain

Network accepts longer chain
excluding the spend
Attacker has clawed back the money
victim thought was theirs

Tx

Tx

Sybil Attack

- Exploit the peer-to-peer network by creating many identities
- Allows an attacker to gain disproportionate control over the

network
- Could allow Denial-of-Service (DoS) attacks
- Eclipse attack: Isolate nodes from the network by displacing

legitimate nodes

Smart Contracts

- Programs stored and executed on the blockchain
- Interacted with through other smart contracts or directly with

a transaction
- Can execute "contracts" without another party to oversee the

transaction
- For Ethereum, these are often written in Solidity

Smart Contracts

contract Counter {
 uint private count;

 function get() public view returns (uint) {
 return count;
 }
 function inc() public {
 count += 1;
 }
 function dec() public {
 count -= 1;
 }
}

- Just like usual programs, smart contracts have typical
software vulnerabilities:
- Integer underflow
- Logical bugs
- Improper access control

- Due to the interactive nature of smart contracts, reentrancy
vulnerabilities are common

- An attacking contract unexpectedly re-enters the victim
contract after regaining execution from the victim contract

- Once your contract is exploited, you cannot rollback (the
blockchain is immutable)

Smart Contract Attacks

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
Attacker Contract

Invoke withdraw on victim

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
100

Attacker Contract

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
100 > 0

Attacker Contract

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
bal=100

Attacker Contract

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

Attacker Contract

Victim transfers balance
to attacker…

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

Attacker Contract

Victim transfers balance
to attacker… along with
execution

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

Attacker Contract

So these aren't
executed yet Victim transfers balance

to attacker… along with
execution

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

Attacker Contract

The attacker can invoke
withdraw again

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

100

Attacker Contract

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

100 > 0

Attacker Contract

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰

bal=100

Attacker Contract

Reentrancy Attack

contract Bank {
 mapping(address => uint) public balances;

 function deposit() public payable {
 balances[msg.sender] += msg.value;
 }
 function withdraw() public {
 uint bal = balances[msg.sender];
 require(bal > 0);
 (bool sent,) = msg.sender.call{value: bal}("");
 require(sent, "Failed to send Ether");
 balances[msg.sender] = 0;
 }
}

😈
💰💰

Attacker Contract

Victim transfers balance
to attacker again

Reentrancy Attack

- In 2016, an ethereum smart contract was exploited for 3.6
million ETH through a reentrancy attack

- Controversially, the Ethereum community created a "hard
fork" to revert the losses

https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/

Exploring Ethereum

- Tools like Etherscan allow you to explore the state of the
blockchain from your browser
- Useful for OSINT

- Remix is a web IDE that allows you to develop and test smart
contracts

- Metamask manage your crypto wallets from the browser
- Integrates with Remix, allowing you to send transactions to live

blockchains or testnets

https://etherscan.io/
https://remix.ethereum.org/
https://metamask.io/

Learning Resources

– Ethereum docs and whitepaper
– Learn about EVM (how ethereum contracts are executed)
– Solidity docs

https://ethereum.org/developers/docs
https://ethereum.org/whitepaper
https://www.evm.codes/about
https://docs.soliditylang.org/en

Next Meetings

2025-04-18 • This Friday
- b01lers CTF
2025-04-20 • This Sunday
- Passkeys

sigpwny{0verflow1ng_wit5_crypt0}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

