
PWN IV - Heap Exploitation
SP2025 Week 06 • 2024-03-09

Nikhil and Akhil

Announcements

- DiceCTF 2025 Quals on 3/28, the Friday after spring break!
- Starts at 4:00 pm, come in person!

sigpwny{house_of_house_of_house}
ctf.sigpwny.com

Memory Layout
Memory Region

.text
(instructions)

.data
(initialized

globals)

.bss
(uninitialized

globals)

heap

stack
(runtime data)

Bottom of memory
(0x0000000000000000)

Top of memory
(0xFFFFFFFFFFFFFFFF)

The Heap

Memory Allocation

- We've seen static stack allocation
- C does support Variable Length Arrays
- How to we return an address to the buffers?

The Heap

- The Heap ≠ Heap ADT
- Allows Dynamic Memory Allocation
- Allocations are preserved across function calls

- malloc(int size): Returns a pointer to allocated data
- free(int* ptr) : Frees the allocation located at ptr.

- Regardless what you put, the minimum allocation will make a
32 byte chunk with 24 bytes of usable memory (64-bit).

Using the Heap

Basic Model of the Heap

Top Chunk Top Chunk

Alloc A

Top Chunk

Alloc B

Alloc A

Top Chunk

Alloc B

Alloc (free)

malloc malloc free

Top Chunk

Alloc B

Alloc C

malloc

What happens when you free

- When you free a chunk, it gets added to a free list
- If you malloc with a similar size, malloc checks the free list

first
- glibc provides many optimizations to make allocations and

reallocations fast!
- When you hear bins, think a double/single linked list.
- Extra metadata gets placed into a chunk to maintain the list

Free Chunk

Coalesce and Split

- Coalescing free chunks into one big chunk
- Done when several adjacent chunks are free and not reused
- Some bins prevent immediate coalescing

- Splitting a large chunk into a remainder chunk
- Sometimes an alloc is smaller than a free chunk available
- malloc will split the chunk into one of the correct size and a

remainder chunk
- A large chunk may coalesce with the top chunk if adjacent
- When the top chunk gets too large, malloc will release the

memory to the system.

Bins

- Malloc will reserve memory from the system when it needs
- It will try to keep that memory available for reuse for as long

as possible
- Free chunks have to be efficiently available for all chunk sizes

Tcache Bins

- Introduced glibc2.26: Thread-specific bins for small
allocations

- 64 bins, max count of 7, min size of 0x20, max size of 0x410
- Subtract 8 for metadata, so min size for bin is 24 bytes or less.

- Each new thread gets a new tcache
- Don't worry about this for now, multithread heap pwn is super

advanced
- Singly-Linked, Only forward ptrs
- Because of their speed, there is lacking security checks within

them

Fast Bins

- The "overflow" for tcache
- 10 bins, between 0x20 and 0xb0

- Sometimes only 7 are active…
- The "in-use" bit is maintained to prevent coalescing

- The fast bin may be flushed and coalesced if large chunks are
available

- Singly Linked

Unsorted Bin

- The laundry pile of memory chunks
- When you free, and it doesnt fall in tcache/fast, it goes here
- malloc waits to see if you immediately reuse this chunk
- If not, it will sort it into a small or large bin

Small Bins

- Like fast bins, fixed size in every bin
- 61 bins, starting at size 32 and up to 1024
- Adjacent chunks can be combined and moved to different

bins
- Circular Doubly Linked

Large Bins

- Stores a range of memory allocations in each bin
- 63 bins
- Memory allocations are inserted in a bin in sorted order
- An exponentially smaller number of bins are used for

exponentially larger allocations
- there are 32 bins that store allocations within 64 byte differences

from each other
- there are 2 bins that store allocations within 256kb differences
- there is 1 "everything else" bin.

- Circular Doubly Linked

Still a Basic Model of the Heap

Top Chunk

Free Chunk F

Free Chunk E

Free Chunk D

Free Chunk C

Chunk

Free Chunk B

Free Chunk A

Heap Base

0x20

0x30

0x40

0x50

...

Free Chunk A

0x20

0x30

0x40

0x50

...

Free Chunk B

0x20

0x30

0x40

0x50

...

Free Chunk C

0x800

Free Chunk D

tcache

fastbins

small bins

Free Chunk E

...

0x1000

...

0x2000

large bins

unsorted

Free Chunk F

Malloc's Brothers

- calloc(items, size) allocates items*size bytes, and
clears it to zero.
- Does NOT use the tcache!

- realloc(ptr, size) changes the allocation size of ptr to
size.
- A horrifying amalgamation of free and malloc.
- Will cause coalescing and splits if you increase/decrease size

Malloc is Horrible to Understand

- There's still many optimizations, behaviors, and interactions
not covered

- Looking at the glibc source code is informative but not easy
- It also changes version to version…
- The best way to understand malloc's memory patterns is to

just experiment
- Especially when doing challenges, as glibc versions change.

Exploitation

A 30000-foot view of pwn

Source: “SoK: Eternal War in Memory” (Szekeres, et al. 2013)

Exploiting Programs

- We want arbitrary code execution:
- Control the return address on the stack
- Return to libc for useful functions

- Two Primitives:
- Arbitrary Read
- Arbitrary Write

- If we can get an arbitrary write to the stack, we can control
program flow

- If we can get an arbitrary read, we can leak libc addresses

Goals with Heap Exploitation

- Make malloc:
- return a chunk somewhere interesting

- Make libc merge invalid chunk
- malloc has optimizations to coalesce adjacent free chunks
- If you corrupt chunk sizes, you can get malloc to coalesce memory

that it’s not supposed to
- Usual result is overlapping chunks

Leak Traversal

Heap

Stack Libc

environ

libc_start_main

last next ptrs

main arenaSaved Pointers

Use After Free (UAF)

- When you free a pointer, you are responsible for clearing the
variable storing the pointer (ptr = NULL;)

- Nothing stops you from reading/writing through that pointer
post-free

- This allows you to affect many aspects of malloc's state
- Preload chunks with data
- Modify Chunk sizes
- Modify fwd/bk pointers(!!)

Example: tcache poisoning

Top Chunk

Alloc B

Alloc A

Top Chunk

Alloc A

Top Chunk
malloc malloc

Example: tcache poisoning

Top Chunk

Alloc B

Alloc A

free free

Top Chunk

Alloc B

Free A

Top Chunk

Free B

Free A

0x80

tcache

Free B Free A

Example: tcache poisoning

0x80

tcache

Free B Stack

overwrite b fwd ptr
(UAF)

Example: tcache poisoning

0x80

tcache

Free B Stack

Stack Chunk

Top Chunk

Alloc B

Alloc A

free free

Top Chunk

Alloc B

Free A

Top Chunk

Free B

Leaked A

Safe Linking

- malloc attempts to """encrypt""" single-linked list pointers
- (pos >> 12) ^ ptr
- By taking the position of where the ptr is stored, you encrypt it

with the ASLR bits of the position.
- But if the position and the ptr are in the same page, then you

can get the heap base:

Double Free

- The free bit does not always mean free
- (the one thing an indicator bit should do)

- Calling free on an already free'd chunk can add it to a free
list twice
- malloc tries to prevent trivial double frees (2 in a row)
- the tcache checks an entire list (only 7)

- Fast bins are vulnerable!
- Modify the free metadata of the received chunk

A complete model of the Heap
(please do not waste time on this)

pwndbg tools

- heap
- Displays the state & address of all heap chunks

- bins/tcachebins/fastbins/smallbins/largebins
- Displays the state and chunks in each bin

- vis_heap_chunks
- Shows a hex dump of the heap, color codes chunks, and marks

chunks in bins

Resources

https://github.com/shellphish/how2heap

https://github.com/shellphish/how2heap

Resources

- https://github.com/shellphish/how2heap
- has more resources linked!

- https://azeria-labs.com/heap-exploitation-part-1-understandi
ng-the-glibc-heap-implementation/

- https://heap-exploitation.dhavalkapil.com/

https://github.com/shellphish/how2heap
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://heap-exploitation.dhavalkapil.com/

Next Meetings

2025-03-13 • This Thursday
- LAN party!!

2024-03-16 • This Weekend
- No meeting, have a good break!

sigpwny{house_of_house_of_house}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

