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Pseudorandomness

- We say a sequence of symbols is pseudorandom if it seems 
to look completely random yet has been created by a 
deterministic, completely repeatable process

- It’s actually provably impossible to turn a short random string 
into a long random string: pseudorandom generators are 
used to turn a shorter random string into a long string that 
looks random



Pseudorandomness

- A PRG G : {0,1}n
 
→ {0,1}n+s is a mapping such that it is 

very hard for any polynomial-time “guesser” to guess the 
output of the PRG given the input string 

- So such guessers can’t tell it apart from the output of a truly 
random function 

- Formally, we say for all PPT adversaries A:
|P[A(G(k) = 1] - P[A(f) = 1]| ⩽ negl(n)

for some truly random function f, uniform random k : {0, 
1}n, and a negligible function negl



So do we security?

- Because a PRG is not truly random and is deterministic, it 
cannot be actually secure

- For this reason, we introduce probabilistic encryption:
- The idea is that encrypting the same plaintext multiple times 

gives a different ciphertext
- Enc

k
(r, m) → r, c where some random r is chosen 

differently every time Enc is invoked; receiver who gets r can 
then decrypt



Stream Cipher

- A probabilistic encryption algorithm building on top of PRGs 
where the cryptographic key and algorithm are applied to 
each binary digit in an input (treated as a data stream)

- The key supplied as input into the PRG is known as the 
keystream

- General Example:
- Calculate keystream with some random IV: G(iv, k)
- Encrypt message (byte or bit level) m∈{0,1}n+s: c = (iv, G(iv, 

k) ⊕ m)
- Decrypt with m = G(k, iv) ⊕ c, discarding IV



Stream Cipher

- Idea for the Stream Cipher: make it difficult for cryptanalysis 
while still maintaining power efficiency

- Longer, pseudorandomly generated keystream makes it 
resistant to brute force

- Since we call the algorithm on a smaller space of input (byte 
level over block level), it requires fewer lines of code and less 
power expenditure than block ciphers



Examples

- ChaCha20 : very popular used, low power stream cipher
- Rivest RC4: example of an insecure stream cipher, especially 

when you don’t discard beginning of keystream
- Chameleon, Fish, Helix
- many more



RC4

    for i from 0 to 255

        S[i] := i

    endfor

    j := 0

    for i from 0 to 255

        j := (j + S[i] + key[i mod keylen]) mod 256

        swap(S[i],S[j])

    endfor

key schedule:
begin prg(with byte S[256])
    i := 0
    j := 0
    while GeneratingOutput:
        i := (i + 1) mod 256
        j := (j + S[i]) mod 256
        swap(S[i],S[j])
        output S[(S[i] + S[j]) mod 256]
    endwhile
end

PRG:

what might go wrong here? the key schedule is insufficient, 
as the first bytes of output 
reveal info about the original key



Stream Cipher weaknesses
- Two-time pad: if the keystream is used more than once

- Say we have messages A,B of equal length and encrypt with same key K, then 
stream cipher produces keystream K with
 E(A) = A⊕K, E(B) = B⊕K

- then if adversary knows E(A), E(B), they compute 
E(A)⊕E(B) = (A⊕K)⊕(B⊕K) = A⊕B

- Having many such plaintexts may allow us to employ standard attacks i.e. crib 
dragging

- Bit flip attacks (more on that later)

- Chosen IV attack: if choosing particular values for the IV exposes a non-random 
pattern in the resulting keystream (via differential cryptanalysis), then the attack can 
reveal some bits in the keystream and reduce effective key length
- This might weaken the key and allow for follow-up weak key attacks



Block Ciphers

- Another type of deterministic encryption algorithm building on 
pseudorandomness that operates on a plaintext of fixed length

- Typically, the plaintext is divided into “blocks” of 16 or 32 bytes 
instead of treated as a continuous stream of byte data

- An algorithm is used to transform each block into an enciphered 
block, and then the results are joined together to form a 
ciphertext



AES

– Block cipher that operates on a fixed block length 
of 16 bytes (128 bits)

– There are a total of 3 different bit lengths for the 
keys: AES-128, AES-192, AES-256

– For the sake of simplicity and due to its widespread 
use, we will stick with AES-128 for now. But the 
same ideas extend to higher key dimensions

– Encryption for AES-128 consists of 10 rounds of 
encryption, AES-192 is 12 rounds, AES-256 is 14 
rounds



AES

- SubBytes uses a global substitution lookup table called the SBOX to 
substitute a set of bits in the current block, adding nonlinearity to the 
encryption

- ShiftRows shifts the rows of the current block by a certain offset amount, 
providing diffusion in the vertical direction.

- MixColumns applies a matrix multiplication operation to each column of 
the current block, providing diffusion in the horizontal direction.

- AddRoundKey performs a bitwise XOR operation between the current 
block and a round key derived from the cipher's key schedule, adding 
confusion to the process.



Modes

- Block ciphers like AES often have different modes of 
encryption governing how each block is encrypted: the 
algorithm itself is only good enough to encrypt one block of 
text, so we need to extend it to work on multiple blocks

- Example modes for AES: ECB, OFB, CTR, CBC, CFB



Cipher Modes - ECB



Cipher Modes



Cipher Modes
CFB/OFB mode (note: creates a keystream from key, IV)

Other modes include CTR mode (uses a nonce via a counter 
seeded with IV) and EAX mode (authenticated)



Why we need modes



How to tell what mode’s been used

- Check for repeated bytes in the encryption, and if the 
ciphertext is of a multiple length of 16 bytes. This likely 
means that ECB was used

- If there is no sign of any repeated bytes but the ciphertext is 
still of a multiple length of 16 bytes, then either CBC or ECB 
encryption has likely been used

- If you have a black box encryption oracle available, try 
sending 1 byte to the oracle. If you get back 1 byte, then this 
has likely been one of the stream modes (OFB/CFB), but if 
you get 16 bytes, then it’s one of the whole-block modes



Differential Cryptanalysis (ECB)

- If the cipher exhibits some sort of non-random behavior based on how 
the plaintext bits change and if you can trace some equivalent 
transformation in the ciphertext, then it’s likely that the implementation is 
suspect to differential attacks

- In the context of AES, “differentials” are essentially the XOR value 
between two bytes since subtraction and addition are treated the same



Differential Cryptanalysis (ECB)
- Consider 2 known plaintext bitblocks, P

1
 and P

2
, and let the known XOR 

(diff) between them be ΔP
- Now suppose we now retrieve the corresponding enciphered blocks C

1
 and 

C
2
 and have the known diff be ΔC

- Let the final round output C
1
 = C

1
' ⊕ K and C

2
 = C

2
' ⊕ K where C1' and 

C2' are the SBOX outputs and K is the round key
ΔC = C

1
 ⊕ C

2
 = C

1
' ⊕ K ⊕ C

2
' ⊕ K = C

1
' ⊕ C

2
'

 Like the ECB penguin, this can reveal patterns within the CT that mirror the PT



Affine Transforms

- transformations upon a vector of the form Ax + b
- In the context of AES, this is represented by y = A·x ⊕ b 

- The transformation first mixes the bits linearly (via matrix A) 
and then shifts them (via vector b).

- Importantly, if A happens to be reversible, then it is possible 
to recover x from y: x = A-1(y⊕ b)

- Affine transformations are important as they allow efficient 
mixing

- However, being purely linear has its problems!!!



Linear Cryptanalysis

- Secure S-Boxes in block ciphers are designed to be resistant 
towards 2 kinds of cryptanalysis: linear and differential

- If an S-Box is linear, the output bitvector y of the substitution can be 
expressed as the bitwise XOR-sum of some linear combination of the input 
bitvector x

- Basically, there exist some vector b and some matrix in GF(2) A such that 
the output bitvector 

- y = A·x ⊕ b
- If this is the case, then we can possibly represent the AES/DES 

encryption as an affine transformation!!! 



P.<x> = PolynomialRing(GF(2))

T.<z> = GF(2^8, modulus=x^8 + x^4 + x^3 + x + 1)

PR = PolynomialRing(T, [f'm{i}' for i in range(16)])

Mgens = PR.gens()

def __shift_rows(self, M):

       s = [list(r) for r in M.rows()]

       s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[3][1], s[2][1], s[0][1]

       s[0][2], s[1][2], s[2][2], s[3][2] = s[1][2], s[0][2], s[3][2], s[2][2]

       s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[0][3], s[3][3], s[2][3]

       return Matrix(s)

def __mix_columns(self, M):

   S = Matrix(T, [

       [T.fetch_int(2), T.fetch_int(3), T.fetch_int(1), T.fetch_int(1)],

       [T.fetch_int(3), T.fetch_int(2), T.fetch_int(3), T.fetch_int(1)],

       [T.fetch_int(1), T.fetch_int(1), T.fetch_int(2), T.fetch_int(3)],

       [T.fetch_int(1), T.fetch_int(1), T.fetch_int(1), T.fetch_int(2)],

   ])

   return S*M



Check for linearity of an SBOX

- It’s very easy to check for the linearity of an sbox
- For all possible i,j within 0 to 255, 

if S[i^j^0] = S[i] ^ S[j] ^ S[0], then the sbox is linear, and it 
is possible to bring the entirety of AES into the form 
A·x ⊕ b



Bit flip attack (CBC)

- The decryption formula for AES-CBC would be 
P
i
 = D

K
(C

i
)⊕C

i-1

C
0
 = IV

- Each block of plaintext is XORed with the previous block 
of ciphertext before being encrypted

- Thus, if an attacker modifies a bit in the ciphertext of one 
block, the corresponding bit in the decrypted plaintext of the 
next block will be flipped

- This can be useful for things like privilege escalation



Bit flip attack (OFB)

- In a similar vein to CBC, a bit flip attack in the OFB mode can flip the 
bit in the corresponding plaintext

- However, if you notice closely for the CBC algorithm, the current 
block of changed ciphertext we decrypted returns gibberish, whereas 
a bit flip in OFB mode will not affect the next block

- This makes OFB more susceptible to bit flip attacks since we might 
still see the changed plaintext look like valid text 

- The alternative CFB mode will flip the bit in the same block like OFB, 
except it will also clobber the next block, making it easier to 
authenticate the decrypted message and detect the bit flip attack



Padding Oracle Attack (CBC)
– If a plaintext has been encrypted in AES-CBC Mode, 

then you can implement a kind of side-channel attack to 
send modified ciphertexts that have been intentionally 
tampered with

– Suppose we have an oracle available to us that can 
provide us insight into whether or not a padding scheme 
input is valid or not

– If we are able to modify an initialization vector, the oracle 
can return to us whether or not the given IV was 
“accepted” based on if the ciphertext padding was valid



Padding oracle (CBC)
- Suppose you have cipher blocks C

1
, C

2
 and want to get the 2nd block's 

decryption P
2 

, and PKCS#7 was used for padding
- Flip the last byte of C

1
 to make C

1
' and sends (IV, C

1
', C

2
) to the 

oracle
- The oracle then tells us if the padding of the last block P

2
' was valid or 

not
- If the padding is correct, then we now know that the last byte of P

2
' = 

D
K
(C

2
)⊕C

1
' is 0x01

- After finding the last byte of P2, we can find the 2nd-to-last byte in a 
similar fashion by setting the last byte of P

2
 to 0x02 by setting the last 

byte of C
1
 to D

k
(C

2
)⊕0x02

- Then modify the second-to-last byte until the padding is correct (0x02, 
0x02)

- Rinse and repeat until all of P
2
 is found



PO Attack (CBC)
So we basically have [0x3C] ^ [x] = 
0x01 which has been returned as 
valid from the server.
By the definition of XOR, this must 
mean that [x] = 0x01 ^ 0x3C = 
0x3D
From there, we just need to xor this 
byte with the corresponding byte 
from the CT to get the plaintext 
byte!



Padding Oracle Attack (CBC)

Of course, we have tools that can automate this process

Tools:
Bletchley: https://code.blindspotsecurity.com/trac/bletchley
PadBuster: https://github.com/GDSSecurity/PadBuster
POET: http://netifera.com/research/
Python-Paddingoracle: https://github.com/mwielgoszewski/python-paddingoracle

https://code.blindspotsecurity.com/trac/bletchley
https://github.com/GDSSecurity/PadBuster
http://netifera.com/research/
https://github.com/mwielgoszewski/python-paddingoracle


General approach

- AES-specific
- CryptoHack! https://cryptohack.org/challenges/aes/
- Avinash Kak’s compsec lecture notes

- Guess the paper
- https://crypto.stackexchange.com/
- SageMath, PyCryptodome

https://cryptohack.org/challenges/aes/
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf
https://crypto.stackexchange.com/


Next Meetings
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- PWN III: ROP
- Learn how to bypass W^X protections with code reuse 

attacks!
2025-02-23 • Next Sunday
- Seminar meeting (TBD)
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