
Block and Stream Ciphers
SP2025 Week 03 • 2025-02-13

Sagnik and George

Announcements

2025-02-16 • This Sunday
- SIGPwny x SIGPolicy: Cyberwarfare
- Learn about how cyberwarfare affects governments,

enterprises and consumers

sigpwny{5ub_5h1ft_4dd_r3p34t}
ctf.sigpwny.com

Pseudorandomness

- We say a sequence of symbols is pseudorandom if it seems
to look completely random yet has been created by a
deterministic, completely repeatable process

- It’s actually provably impossible to turn a short random string
into a long random string: pseudorandom generators are
used to turn a shorter random string into a long string that
looks random

Pseudorandomness

- A PRG G : {0,1}n

→ {0,1}n+s is a mapping such that it is

very hard for any polynomial-time “guesser” to guess the
output of the PRG given the input string

- So such guessers can’t tell it apart from the output of a truly
random function

- Formally, we say for all PPT adversaries A:
|P[A(G(k) = 1] - P[A(f) = 1]| ⩽ negl(n)

for some truly random function f, uniform random k : {0,
1}n, and a negligible function negl

So do we security?

- Because a PRG is not truly random and is deterministic, it
cannot be actually secure

- For this reason, we introduce probabilistic encryption:
- The idea is that encrypting the same plaintext multiple times

gives a different ciphertext
- Enc

k
(r, m) → r, c where some random r is chosen

differently every time Enc is invoked; receiver who gets r can
then decrypt

Stream Cipher

- A probabilistic encryption algorithm building on top of PRGs
where the cryptographic key and algorithm are applied to
each binary digit in an input (treated as a data stream)

- The key supplied as input into the PRG is known as the
keystream

- General Example:
- Calculate keystream with some random IV: G(iv, k)
- Encrypt message (byte or bit level) m∈{0,1}n+s: c = (iv, G(iv,

k) ⊕ m)
- Decrypt with m = G(k, iv) ⊕ c, discarding IV

Stream Cipher

- Idea for the Stream Cipher: make it difficult for cryptanalysis
while still maintaining power efficiency

- Longer, pseudorandomly generated keystream makes it
resistant to brute force

- Since we call the algorithm on a smaller space of input (byte
level over block level), it requires fewer lines of code and less
power expenditure than block ciphers

Examples

- ChaCha20 : very popular used, low power stream cipher
- Rivest RC4: example of an insecure stream cipher, especially

when you don’t discard beginning of keystream
- Chameleon, Fish, Helix
- many more

RC4

 for i from 0 to 255

 S[i] := i

 endfor

 j := 0

 for i from 0 to 255

 j := (j + S[i] + key[i mod keylen]) mod 256

 swap(S[i],S[j])

 endfor

key schedule:
begin prg(with byte S[256])
 i := 0
 j := 0
 while GeneratingOutput:
 i := (i + 1) mod 256
 j := (j + S[i]) mod 256
 swap(S[i],S[j])
 output S[(S[i] + S[j]) mod 256]
 endwhile
end

PRG:

what might go wrong here? the key schedule is insufficient,
as the first bytes of output
reveal info about the original key

Stream Cipher weaknesses
- Two-time pad: if the keystream is used more than once

- Say we have messages A,B of equal length and encrypt with same key K, then
stream cipher produces keystream K with
 E(A) = A⊕K, E(B) = B⊕K

- then if adversary knows E(A), E(B), they compute
E(A)⊕E(B) = (A⊕K)⊕(B⊕K) = A⊕B

- Having many such plaintexts may allow us to employ standard attacks i.e. crib
dragging

- Bit flip attacks (more on that later)

- Chosen IV attack: if choosing particular values for the IV exposes a non-random
pattern in the resulting keystream (via differential cryptanalysis), then the attack can
reveal some bits in the keystream and reduce effective key length
- This might weaken the key and allow for follow-up weak key attacks

Block Ciphers

- Another type of deterministic encryption algorithm building on
pseudorandomness that operates on a plaintext of fixed length

- Typically, the plaintext is divided into “blocks” of 16 or 32 bytes
instead of treated as a continuous stream of byte data

- An algorithm is used to transform each block into an enciphered
block, and then the results are joined together to form a
ciphertext

AES

– Block cipher that operates on a fixed block length
of 16 bytes (128 bits)

– There are a total of 3 different bit lengths for the
keys: AES-128, AES-192, AES-256

– For the sake of simplicity and due to its widespread
use, we will stick with AES-128 for now. But the
same ideas extend to higher key dimensions

– Encryption for AES-128 consists of 10 rounds of
encryption, AES-192 is 12 rounds, AES-256 is 14
rounds

AES

- SubBytes uses a global substitution lookup table called the SBOX to
substitute a set of bits in the current block, adding nonlinearity to the
encryption

- ShiftRows shifts the rows of the current block by a certain offset amount,
providing diffusion in the vertical direction.

- MixColumns applies a matrix multiplication operation to each column of
the current block, providing diffusion in the horizontal direction.

- AddRoundKey performs a bitwise XOR operation between the current
block and a round key derived from the cipher's key schedule, adding
confusion to the process.

Modes

- Block ciphers like AES often have different modes of
encryption governing how each block is encrypted: the
algorithm itself is only good enough to encrypt one block of
text, so we need to extend it to work on multiple blocks

- Example modes for AES: ECB, OFB, CTR, CBC, CFB

Cipher Modes - ECB

Cipher Modes

Cipher Modes
CFB/OFB mode (note: creates a keystream from key, IV)

Other modes include CTR mode (uses a nonce via a counter
seeded with IV) and EAX mode (authenticated)

Why we need modes

How to tell what mode’s been used

- Check for repeated bytes in the encryption, and if the
ciphertext is of a multiple length of 16 bytes. This likely
means that ECB was used

- If there is no sign of any repeated bytes but the ciphertext is
still of a multiple length of 16 bytes, then either CBC or ECB
encryption has likely been used

- If you have a black box encryption oracle available, try
sending 1 byte to the oracle. If you get back 1 byte, then this
has likely been one of the stream modes (OFB/CFB), but if
you get 16 bytes, then it’s one of the whole-block modes

Differential Cryptanalysis (ECB)

- If the cipher exhibits some sort of non-random behavior based on how
the plaintext bits change and if you can trace some equivalent
transformation in the ciphertext, then it’s likely that the implementation is
suspect to differential attacks

- In the context of AES, “differentials” are essentially the XOR value
between two bytes since subtraction and addition are treated the same

Differential Cryptanalysis (ECB)
- Consider 2 known plaintext bitblocks, P

1
 and P

2
, and let the known XOR

(diff) between them be ΔP
- Now suppose we now retrieve the corresponding enciphered blocks C

1
 and

C
2
 and have the known diff be ΔC

- Let the final round output C
1
 = C

1
' ⊕ K and C

2
 = C

2
' ⊕ K where C1' and

C2' are the SBOX outputs and K is the round key
ΔC = C

1
 ⊕ C

2
 = C

1
' ⊕ K ⊕ C

2
' ⊕ K = C

1
' ⊕ C

2
'

 Like the ECB penguin, this can reveal patterns within the CT that mirror the PT

Affine Transforms

- transformations upon a vector of the form Ax + b
- In the context of AES, this is represented by y = A·x ⊕ b

- The transformation first mixes the bits linearly (via matrix A)
and then shifts them (via vector b).

- Importantly, if A happens to be reversible, then it is possible
to recover x from y: x = A-1(y⊕ b)

- Affine transformations are important as they allow efficient
mixing

- However, being purely linear has its problems!!!

Linear Cryptanalysis

- Secure S-Boxes in block ciphers are designed to be resistant
towards 2 kinds of cryptanalysis: linear and differential

- If an S-Box is linear, the output bitvector y of the substitution can be
expressed as the bitwise XOR-sum of some linear combination of the input
bitvector x

- Basically, there exist some vector b and some matrix in GF(2) A such that
the output bitvector

- y = A·x ⊕ b
- If this is the case, then we can possibly represent the AES/DES

encryption as an affine transformation!!!

P.<x> = PolynomialRing(GF(2))

T.<z> = GF(2^8, modulus=x^8 + x^4 + x^3 + x + 1)

PR = PolynomialRing(T, [f'm{i}' for i in range(16)])

Mgens = PR.gens()

def __shift_rows(self, M):

 s = [list(r) for r in M.rows()]

 s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[3][1], s[2][1], s[0][1]

 s[0][2], s[1][2], s[2][2], s[3][2] = s[1][2], s[0][2], s[3][2], s[2][2]

 s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[0][3], s[3][3], s[2][3]

 return Matrix(s)

def __mix_columns(self, M):

 S = Matrix(T, [

 [T.fetch_int(2), T.fetch_int(3), T.fetch_int(1), T.fetch_int(1)],

 [T.fetch_int(3), T.fetch_int(2), T.fetch_int(3), T.fetch_int(1)],

 [T.fetch_int(1), T.fetch_int(1), T.fetch_int(2), T.fetch_int(3)],

 [T.fetch_int(1), T.fetch_int(1), T.fetch_int(1), T.fetch_int(2)],

])

 return S*M

Check for linearity of an SBOX

- It’s very easy to check for the linearity of an sbox
- For all possible i,j within 0 to 255,

if S[i^j^0] = S[i] ^ S[j] ^ S[0], then the sbox is linear, and it
is possible to bring the entirety of AES into the form
A·x ⊕ b

Bit flip attack (CBC)

- The decryption formula for AES-CBC would be
P
i
 = D

K
(C

i
)⊕C

i-1

C
0
 = IV

- Each block of plaintext is XORed with the previous block
of ciphertext before being encrypted

- Thus, if an attacker modifies a bit in the ciphertext of one
block, the corresponding bit in the decrypted plaintext of the
next block will be flipped

- This can be useful for things like privilege escalation

Bit flip attack (OFB)

- In a similar vein to CBC, a bit flip attack in the OFB mode can flip the
bit in the corresponding plaintext

- However, if you notice closely for the CBC algorithm, the current
block of changed ciphertext we decrypted returns gibberish, whereas
a bit flip in OFB mode will not affect the next block

- This makes OFB more susceptible to bit flip attacks since we might
still see the changed plaintext look like valid text

- The alternative CFB mode will flip the bit in the same block like OFB,
except it will also clobber the next block, making it easier to
authenticate the decrypted message and detect the bit flip attack

Padding Oracle Attack (CBC)
– If a plaintext has been encrypted in AES-CBC Mode,

then you can implement a kind of side-channel attack to
send modified ciphertexts that have been intentionally
tampered with

– Suppose we have an oracle available to us that can
provide us insight into whether or not a padding scheme
input is valid or not

– If we are able to modify an initialization vector, the oracle
can return to us whether or not the given IV was
“accepted” based on if the ciphertext padding was valid

Padding oracle (CBC)
- Suppose you have cipher blocks C

1
, C

2
 and want to get the 2nd block's

decryption P
2

, and PKCS#7 was used for padding
- Flip the last byte of C

1
 to make C

1
' and sends (IV, C

1
', C

2
) to the

oracle
- The oracle then tells us if the padding of the last block P

2
' was valid or

not
- If the padding is correct, then we now know that the last byte of P

2
' =

D
K
(C

2
)⊕C

1
' is 0x01

- After finding the last byte of P2, we can find the 2nd-to-last byte in a
similar fashion by setting the last byte of P

2
 to 0x02 by setting the last

byte of C
1
 to D

k
(C

2
)⊕0x02

- Then modify the second-to-last byte until the padding is correct (0x02,
0x02)

- Rinse and repeat until all of P
2
 is found

PO Attack (CBC)
So we basically have [0x3C] ^ [x] =
0x01 which has been returned as
valid from the server.
By the definition of XOR, this must
mean that [x] = 0x01 ^ 0x3C =
0x3D
From there, we just need to xor this
byte with the corresponding byte
from the CT to get the plaintext
byte!

Padding Oracle Attack (CBC)

Of course, we have tools that can automate this process

Tools:
Bletchley: https://code.blindspotsecurity.com/trac/bletchley
PadBuster: https://github.com/GDSSecurity/PadBuster
POET: http://netifera.com/research/
Python-Paddingoracle: https://github.com/mwielgoszewski/python-paddingoracle

https://code.blindspotsecurity.com/trac/bletchley
https://github.com/GDSSecurity/PadBuster
http://netifera.com/research/
https://github.com/mwielgoszewski/python-paddingoracle

General approach

- AES-specific
- CryptoHack! https://cryptohack.org/challenges/aes/
- Avinash Kak’s compsec lecture notes

- Guess the paper
- https://crypto.stackexchange.com/
- SageMath, PyCryptodome

https://cryptohack.org/challenges/aes/
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf
https://crypto.stackexchange.com/

Next Meetings

2025-02-16 • This Sunday
- SIGPwny x SIGPolicy: Cyberwarfare
2025-02-20 • Next Thursday
- PWN III: ROP
- Learn how to bypass W^X protections with code reuse

attacks!
2025-02-23 • Next Sunday
- Seminar meeting (TBD)

sigpwny{5ub_5h1ft_4dd_r3p34t}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

