
PWN II
FA2024 Week 09 • 2024-11-03

Sam Ruggerio and Jake Mayer

Announcements

-

sigpwny{%200c%n%15$p%+d}
ctf.sigpwny.com

Review: PWN I

- Buffers and variables are stored on the stack, at a fixed size,
contiguous in memory.

- Unsafe functions can write more data than the buffer can
store, leading to Buffer Overflow Vulnerabilities.

- We can control the program flow by overflowing the buffer
(local variable) to overwrite the return address.

Local Variable

...

Modified Return Address

Low Address

High Address

The stack

Overflow

Shellcode

- Shellcode is a term for bytes of executable
instructions that we plan to run.

- You can write your own, or google existing
exploits

- https://www.exploit-db.com/exploits/47008
- Search for "x86_64 Linux Shellcode"
- This one opens a shell, but you can do anything,

like allocate memory, open and write to files, etc.

https://www.exploit-db.com/exploits/47008

Shellcode
stack_var_1

Saved Frame Pointer

Return Address =
Address of Shellcode

Shellcode

More Shellcode

Even More Shellcode

...

int vulnerable() {
puts("Say Something!\n");
char stack_var_1[8];
gets(stack_var_1);
return 0;

}

> ./vulnerable
Say Something!
AAAAAAAABBBBBBBB
{addr on stack}
{shellcode}

Addr
on
stack

Problem: in order to jump to our shellcode on the stack, we need an address of
something on the stack!

Mitigation: NX

- ret2shellcode only works if you have permissions to both
- Write to the memory region
- Execute the memory region

- There is a philosophy of how to manage memory regions: W^X
a.k.a Write XOR eXecute

- In modern complication, the stack is given RW permissions,
but never X.
- Back in the day, this was not considered, and the stack was

executable!

Virtual Memory Protections

- You will learn in CS233 or ECE391 about Virtual Memory and
how it is handled

- For our purposes, understand that program data, program
globals, stack, heap are all uniquely allocated sections

- The stack (with NX) has RW- perms
- The heap also has RW-
- Program Data has R-X
- Static Globals has R--
- Is there ever write-only perms?

Mitigation: Stack Canary

- A randomly
generated number
placed before return
address

- Canary value verified
before returning,
crashing if modified.

stack_var_1

Saved Frame Pointer

Stack Canary

Return Address

...

int vulnerable() {
puts("Say Something!\n");
char stack_var_1[4];
gets(stack_var_1);
if (rbp+8 != r15){

__stack_chk_fail();
}
return 0;

}

Problem: how do we leak the stack canary to
bypass this check?

Mitigation: ASLR + PIE

- Address Space Layout Randomization
- Position Independent Executable

- Without PIE, our code is loaded at a fixed address
(traditionally 0x400000).

- With PIE, our code only uses relative offsets.
- Now we can use ASLR, loading our code to a new random

address every time.
- e.g. first load: 0x551234
- e.g. second load: 0x559878

problem: how do we jump to a function if its absolute address keeps changing?

Exploit Primitives

– “Building blocks” of an exploit
– Common primitives

– Read
– Arbitrary (read anywhere)
– Uncontrolled (read starting from some

address)
– Write

– Arbitrary (write anything anywhere)
– Uncontrolled (write something anywhere)
– Also uncontrolled (write anything

somewhere)
– Leak

– Usually done with a read, but not always
– Necessary because addresses are often

randomized

Vulnerability 1 Vulnerability 2

Out-of-bounds
read

Address leak

Arbitrary write

Code
Execution

Exploit Primitives

- In PWN I, we had arbitrary/uncontrolled write with buffer
overflow

- Now, we will give you binaries with ASLR/PIE/Canary/NX
- We now need arbitrary reads to leak information so we can:

- Jump to a randomized (on run) location of memory
- Keep the Canary intact
- Use executable code wherever allowed

Bypassing Mitigations

- To bypass NX, we have to return to executable memory:
- Code in the standard library (libc)
- The target program itself

- To bypass Stack Canary, we need to leak stack memory to
learn the canary's value.

- To bypass ASLR/PIE, we need to leak a pointer to program or
stack memory
- then, we can infer the randomized offset
- offset = leak - base

Dangerous Function of the Day: printf()

– Formatted print function
– printf("Hello %s!", "Kevin"); // prints ‘Hello Kevin!’
– printf("My favorite number is %d", 1337);

– ‘My favorite number is 1337’
– printf("%s, my favorite number is %d", "Kevin", 1337);

– ‘Kevin, my favorite number is 1337’
– %s and %d are format specifiers

– Tells the function to read the next argument as a certain data
type
– %s -> string, %d -> decimal integer, %p -> pointer, etc.

– What if it’s just used as a print function?
– printf(name) // name is controlled by the user
– If name is ‘Kevin’, prints ‘Kevin’

Dangerous Function of the Day: printf()

– Formatted print function, Variadic
– printf("Hello %s!", "Kevin"); // prints ‘Hello Kevin!’
– printf("My favorite number is %d", 1337);

– ‘My favorite number is 1337’
– printf("%s, my favorite number is %d", "Kevin", 1337);

– ‘Kevin, my favorite number is 1337’
– %s and %d are format specifiers

– Tells the function to read the next argument as a certain data
type
– %s -> string, %d -> decimal integer, %p -> pointer, etc.

– What if it’s just used as a print function?
– printf(name) // name is controlled by the user
– If name is ‘%s’, prints...

Primitive: Stack Read

– %p ‘pointer’ format specifier
– printf("%p", 0x13371337);

– Prints ‘0x13371337’
– printf("%p");

Review: Calling Functions

Local Variables

Saved Base Pointer

Return Address

...Prior Stack Data

printf("%p", 0x1234);

8 bytes

8 bytes

Low Address

High Address

Stack grows to
lower address

%rdi → "%p" %rsi = 0x1234

The stack

New: Calling Functions

Local Variables

Saved Base Pointer

Return Address

...Prior Stack Data

printf("%p%p%p%p%p", 1, ..., 5);

8 bytes

8 bytes

Low Address

High Address

%rdi → "%p%p%p%p%p" %rsi = 1 ... %r9 = 5

The stack

New: Calling Functions

Local Variables

Saved Base Pointer

Return Address

6

...Prior Stack Data

printf("%p%p%p%p%p%p", 1, ..., 6);

8 bytes

8 bytes

Low Address

High Address

%rdi → "%p%p%p%p%p%p" %rsi = 1 ...

The stack

8 bytes

printf Exploitation

Local Variables

Saved Base Pointer

Return Address

...Prior Stack Data

printf("%p%p%p%p%p%p%p%p%p%p");

8 bytes

8 bytes

Low Address

High Address

%rdi → "%p%p%p%p%p%p%p%p%p%p"

The stack

��

Primitive: Stack Read

– %p format specifier
– printf("%p", 0x13371337);

– Prints ‘0x13371337’
– printf("%p");

– Whatever is next in arguments, eventually stack memory!
– printf("%p %p %p %p %p %p %p");

– Prints out some registers and stack memory, 8 bytes at a time
– Figure out which data is the thing you want :)

– If the string ‘sigpwny{’ were on the stack, you might see:
– 0x7b796e7770676973
– These are hexadecimal ASCII values, online converters may be useful

– Note:
– %p interprets data as little endian

Primitive: Arbitrary Read

– %s format specifier
– printf("%s", "hello");

– Prints ‘hello’
– printf("%s", 0x12345678);

– Prints the string starting from memory address 0x12345678
– printf("%3$s", 0x100, 0x200, 0x300);

– Prints the string starting from memory address 0x300 (3rd argument)

Primitive: Arbitrary Read

– char name[64]; // stored on stack
– fgets(name, 64, stdin); // ‘%n$p’ <- n is a number
– printf(name);
– For some n, the %n$p will print name!

– E.g. 0x70243525
– Key idea:

– Format specifiers can read from the stack, and name is on the stack
– Format specifiers can reference our input!

– If name is ‘%n$s’ (for correct n)
– Prints the string starting from a memory address in our input

Primitive: Arbitrary Read

– char name[64]; // stored on stack
– fgets(name, 64, stdin);
– printf(name);
– If name is ‘%n$s____\x11\x22\33\x44\x55\x66\x77\x88’ (for correct n)

– Prints the string starting from memory address
0x8877665544332211

– We can read from memory addresses contained in our input
– Note: why the underscores?

– Each argument is 8 bytes: len(‘%n$s____’) == 8, so the address is
aligned correctly. Pad to a multiple of 8 bytes before the address.

– Testing strategy:
– Develop with %n$p instead of %n$s and verify the correct address

gets printed
– Then switching to %s will make it read from the correct address!

Primitive: Arbitrary Write

– %n format specifier
– Writes the number of bytes previously printed to the given address
– printf("%n", &number);

– number = 0;
– printf("AAAA%n", &number);

– number = 4;
– printf("%500p%n", 1, &number);

– number = 500;
– ‘%500p’ means format as pointer, padding to 500 characters

– In this case, ‘0x1’ preceded by 497 spaces
– Easy way to print a given number of bytes

Primitive: Arbitrary Write

- Testing strategy:
– Develop with %n$p instead of %n$n and verify the correct address is

printed
– Then switching to %n will make it write to the correct address!

– Note: by default, %n writes 4 bytes
– "h" is a size specifier flag
– %hn writes 2 bytes, %hhn writes 1 byte

Libc

- Libc is a program that is loaded at the same time as your
program, which hold the standard library

- If we get a leak to libc, we get access to many powerful
functions we can control

one_gadget

- There is a tool called one_gadget, which given a binary, finds
a location which will call execve('/bin/sh/',?,?)

- A method to pop a shell as a ‘win function’ if NX is on
- Provided that the register constraints are met, there are

several positions in libc that we can return to.

https://github.com/david942j/one_gadget

Bistro Demo

Next Meetings

2024-11-07 • This Thursday
- Pyjails with Cameron and Louis
- Escape limited Python environments

Challenges!

- Format 0-3 + Quiz acts as a primer for using specifiers
- 3 - Execute and 4 - Format are pure pwnables covering no-NX

and format
- Libc ROP may need one_gadget to solve

sigpwny{%200c%n%15$p%+d}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

