g%g SIGPwny

FA2024 Week 08 o 2024-10-27

Cryptography Il

Emma and Richard

Announcements

oA

ctf.sigpwny.com

sigpwny{blg numb3r5 g0 brr}

M’:chwmsvsvm IS LIKE

ANY FEISTEL CIPHER, EXCEPT

INTHE S-BOXES WE SimeLY PECRVPTION

TAKE THE BITSTRING DpwN. 01101010

FLIP IT, AND REVERSE IT. »
00110101

o~ "
11001010

oS
OCloio0011

/\/\/\’\ -~ O AN
AN IAASNAAANNDN DNONNONOND ~
TAAADTCORAAAANNILNAR

|'VE BEEN BARRED FROM SPEAKING AT ANY MAJOR
CR{P’IDGRN’HY CONFERENCES EVER SINCE 1T BECAME.
CIEAR THAT ALL MY ALGORITHMS WERE TUST

THINLY DISGOISED MIsSY ELLBTT SONGS.

0

Overview

- Modular Arithmetic

- Chinese Remainder Theorem
- Factoring

- RSA

- Common attacks

0

Small vs Large n

- Modular arithmetic
- Arithmetic mod n is the remainder after division with n
- Information lost when finding values for mod n

0

Small vs Large n

- Suppose | ask you to find 4 * 4 mod 3
- Theresult is 1, pretty straightforward if you're comfortable with
modular arithmetic
- Now | tell you x =1 mod 3 and ask you to find x / 4
- Much harder

0

Small vs Large n

- Now suppose | ask you to find 4 * 4 mod 20
- Theresult is 16, also pretty straightforward

- Now | tell you x = 16 mod 20 and ask you to find x / 4
- Much easier by comparison!

- What can we do with this?

0

The Chinese Remainder Theorem

- Ancient theorem dating back to 3rd century
- Let’s try to find x such that 0 < x < 105. Additionally, we are
given the following information

X =2 (mod 3)
X =3 (mod 5)
X =2 (mod 7)

- According to the Chinese Remainder Theorem,
X=23(mod3*5*7 =109

0

The Chinese Remainder Theorem

- More generally speaking, let's say we have:
X=n (modp,)
X = n,(mod p,)

X =n (modp,)

- Because p. and P, share no common factors whenever i # |,
we have a unique solution for x (mod p Ps---Py)

R

N~

Why Should | Care?

- Cryptographic systems using modular arithmetic (many
modern cryptographic systems) need to be careful with
primes

- Smooth primes: primes p such that p - 1 has many small

factors
- Pohlig-Hellman algorithm

- CRT and Pohlig-Hellman used to attack TLS/SSL in 2015

R

Quick Refresher: Diffie-Hellman

- Alice and Bob arrive at a shared
secret using their private secrets

- Works because of the discrete
logarithm problem

- Diffie-Hellman used to share keys
for symmetric encryption

schemes
- What about asymmetric
encryption?

Asymmetric Encryption

- Public key

- Intentionally broadcast for people to use

- Anyone can use to encrypt a message to send us
- Private key

- Keep to yourself

- Use to decrypt other people's messages to us

- RSA is one example we will go into

0

Totients and Euler's Function

- We call ¢(n) Euler’s “totient” function
- ¢(n) = the number of numbers = 0 that share no factors with n
- Euler’s Theorem: If a and n share no factors, then
ap(n) =1 (mod n)
- This theorem is the basis for the RSA cryptosystem

R

Activity: Quick Maths

- Multiply 7 and 7
- 49
- Multiply 2048 and 3
- 6144
- Factors of 49
- 1,7,49
- Factors of 6144
- 1,2,3,4,06, 8,12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512,
768, 1024, 1536, 2048, 3072, 6144
- Factors of 32138210943
- Uhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

R

The Hard Problem in RSA

- Multiplication is easy

- Factoring is hard

- Let p and q be large primes. If n = p * q, then
¢o(n)=pP-1)*(q-1)

- QGiven n, since p and q are large, factoring is hard!

- Therefore, finding ¢(n) is hard

0

The RSA Cryptosystem

- Let e be a public exponent, usually e = 2'° + 1 = 65537

- Alice generates large (> 256 or even > 512 bits) secret primes
P, g

- Alice then calculates n = p * g and releases it as a public key.
Then they calculate ¢(n) = (p — 1) * (g — 1) as a private key.

- Knowing ¢(n), compute d such that ed =1 (mod ¢(n))
- If you know ¢(n), this is fast using the Extended Euclidian Algorithm

- Bob computes ¢ = m®and sends it to Alice
- Then Alice can compute ¢c?= m (mod n)

R

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Correctness

- Remember, modular arithmetic is arithmetic using remainders
- So if a = b (mod n) then we should have that a = b + kn for

some K.
- ed=1(mod ¢(n)). Soed =1 + k - ¢(n) for some k

- c9= (M®)9=m*= MmN =m s« (MmN =m* 1K= m (mod n)

R

Attacks

- Small primes: brute forceable

- Smooth primes: Chinese Remainder Theorem

- Large public n or small ¢(n): Weiner’s Attack

- Oracles: Get your pen and paper, do the algebra!

- Ducks (Protip: Don’t use pastebin.com as secret storage)
- etc... (Google is your best friend)

R

https://sagi.io/crypto-classics-wieners-rsa-attack/
https://crypto.2012.rump.cr.yp.to/87d4905b6d2fbc6ad2389debb73f7035.pdf

Physical

uP

uC

@
:
O
2
=
O
=
ks
L
5

Low Cost ----

)

Digital
Signatures

Entity
Authentication

MAC
Algorithms

Hash

Functions

Data

Authentication

Zero-
Knowledge
Proofs

Origin Non-

Repudiation

Block
Ciphers,
Stream
Ciphers

Confidentiality

Public-Key
Encryption

Challenges

- Cryptohack!

Learn with fantastic lessons and
challenges, and earn points on
PwnyCTF while you’re at it!

ctf.sigpwny.com/challenges#Meetin
gs/CryptoHack

R

N~

https://ctf.sigpwny.com/challenges#Meetings/CryptoHack
https://ctf.sigpwny.com/challenges#Meetings/CryptoHack

Next Meetings

2024-10-31 « Next Thursday
- Halloween @

2024-11-03 « Next Sunday
- pwn Il (format string attacks, control flow hijacking) with Sam

R

N~

ctf.sigpwny.com

sigpwny{blg numb3r5 g0 brr}

Meeting content can be found at
sigpwny.com/meetings.

LS SIGPwny

N\

