
Cryptography I
FA2024 Week 08 • 2024-10-24

Nikhil and George

Announcements

sigpwny{r3v3r51n6_bu7_m47h}
ctf.sigpwny.com

funny image here

What is Cryptography all about?

- Secure communication between 2+ parties (Alice, Bob)

Consequences of bad cryptography

- Mary Queen of Scots executed for conspiring to kill Queen
Elizabeth I (Babbington Plot)

- Vulnerabilities in OpenSSH (e.g. CVE-2008-0166) give an
attacker a free shell on your system

Then vs. now

- Cryptanalysis done manually by spymasters, generally very
targeted (e.g. military use)
- Schemes were secure until they weren’t

- Current day: your computer send millions of encrypted
packets to tens of thousands of hosts

- We need schemes predicated on computational hardness
assumptions (if these assumptions hold, this scheme is
secure to these categories of attacks)

XOR

A B A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

A.k.a. addition mod 2
Associative, commutative, self-inverse

Data Representation

>>> from Crypto.Util.number import long_to_bytes

>>> long_to_bytes(0xdeadbeef) # integer

b'\xde\xad\xbe\xef'

>>> base64.b64decode(b'3q2+7w==') # base64

b'\xde\xad\xbe\xef'

>>> bytes.fromhex("deadbeef") # hex string

b'\xde\xad\xbe\xef'

Substitution ciphers

- Caesar Cipher (a.k.a. rot13, hint for Vim users: :h g?)
- Add 13 to every letter in the alphabet (with wraparound)
- Ex. CAESAR -> PNRFNE

- Generally, any function that maps each letter to another letter
- Insecure!! Why?
- Cryptanalysis

- Frequency analysis
- Known plaintext (cribs): “Keine besonderen Ereignisse” (nothing to

report)

The one-time pad
>>> plain = b"Test"

>>> cipher = bytes.fromhex("cafebabe")

>>> bytes([i ^ j for i, j in zip(cipher, plain)])
b'\x9e\x9b\xc9\xca'

The one-time pad
- Achieves “perfect secrecy”! 🥳

- …but at what cost?
- Requires a completely random bitstring the same length of

your plaintext
- Not only does this double the message size, but how do you agree

on this shared secret?
- Pseudorandom generators can “stretch” a little bit of randomness

into a lot of randomness
- Stay tuned for AES in crypto III…

Symmetric Encryption

(Asymmetric encryption, e.g. RSA, in Cryptography II)

Dec(Enc(plaintext, key), key) == plaintext
vs.
Dec(Enc(ciphertext, public key), private key) == plaintext

Computational hardness

- We cannot actually prove that these are hard, but they are
strongly believed to be hard
- This assumption turns out to be false for quantum computers, which

is why people want to build quantum computers
- Discrete log/factoring problem

-
- Exponentiation is easy, logarithms are hard

Diffie-Hellman

- Alice and Bob arrive at a shared
secret using their private secrets

- All communication happens over
a public channel

- Modern implementations perform
computations over elliptic curves
(ECDH)

Tools

- Pen and paper
- Wikipedia
- Stack Exchange
- SageMath, PyCryptodome, pwntools

from sage.all import *
from pwn import *

conn = remote('localhost', 1337)

a = int(conn.recvline()[3:].decode('utf-8'))
b = int(conn.recvline()[3:].decode('utf-8'))
sol = a.powermod(b, p)

conn.recvuntil(b'c = ')
conn.sendline(str(int(sol)).encode('utf-8'))
print(conn.recvline())

https://github.com/sagemath/sage
https://www.pycryptodome.org/
https://docs.pwntools.com/en/stable/index.html

Food for thought

- How to establish a shared secret? (RSA)
- How does Alice know she’s really talking to Bob? (digital

certificates, web of trust)
- If you take one thing away from this meeting: never roll your

own crypto!

CryptoHack

Learn with fantastic lessons and
challenges, and earn points on
PwnyCTF while you’re at it!
ctf.sigpwny.com/challenges#Meetin
gs/CryptoHack

https://cryptohack.org/
https://ctf.sigpwny.com/challenges#Meetings/CryptoHack
https://ctf.sigpwny.com/challenges#Meetings/CryptoHack

Challenges

- Start with First XOR, flag_format (both XOR-based) and
Vigenère Visionary

- Diffie-Hellman god has you do the Diffie-Hellman shared
secret computation (look at Wikipedia for implementation
details)

- First AES and Add One are based on the “Advanced
Encryption Standard (AES)” block cipher

- Totient Turmoil and Easy RSA involve RSA (will be covered
this Sunday)

Next Meetings

2024-10-27 • This Sunday
- Cryptography II (RSA) with Richard and Emma

2024-10-31 • Next Thursday
- Halloween 👻

2024-10-31 • Next Sunday
- Pwn II (format string attacks, control flow hijacking) with Sam

sigpwny{TODO}
ctf.sigpwny.com

Meeting content can be found at
sigpwny.com/meetings.

